Silencing calreticulin gene might protect cardiomyocytes from angiotensin II-induced apoptosis.

Life Sci

Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.. Electronic address:

Published: April 2018

Aims: Calreticulin (CRT), as a chaperone, contributes to protein folding and quality control cycle. CRT is an important factor regulating Ca that participates in cell apoptosis. However, the function of CRT in the heart is still controversial. Therefore, we aimed to investigate the potential role of CRT in angiotensin II-induced cardiomyocytes apoptosis.

Main Methods: Primary cultured neonatal cardiomyocytes were stimulated with angiotensin II to induce the apoptosis. Expression of CRT and endoplasmic reticulum (ER) stress associated protein was detected by western blotting after angiotensin II stimulation for 24 h. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were also detected. Additionally, the function of CRT on cardiomyocytes apoptosis and ER stress/unfolded protein response signaling pathway was investigated by transfecting specific CRT-targeting siRNA.

Key Findings: Cardiomyocytes apoptosis was induced by angiotensin II. The protein level of CRT was elevated after angiotensin -II stimulation for 24 h. Additionally, the protein levels of GRP78, ATF4, C-ATF6, CHOP and the ROS production were elevated, but the Bcl-2 expression and the level of MMP were down-regulated. After silencing CRT gene in the process of angiotensin II-induced cardiomyocytes apoptosis, cardiomyocytes apoptosis rate decreased, meanwhile the protein expression of CRT, GRP78, ATF4, C-ATF6 and CHOP were down-regulated. However, the Bcl-2 expression was up-regulated, and the increase of ROS and the loss of MMP were alleviated.

Significance: Our study demonstrated that CRT might protect cardiomyocytes from apoptosis induced by angiotensin II, in which ER stress and mitochondria function were identified as possible underlying molecular bases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.02.020DOI Listing

Publication Analysis

Top Keywords

cardiomyocytes apoptosis
20
angiotensin ii-induced
12
crt
10
cardiomyocytes
8
protect cardiomyocytes
8
angiotensin
8
apoptosis
8
function crt
8
ii-induced cardiomyocytes
8
expression crt
8

Similar Publications

Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:

Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!