Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

J Invertebr Pathol

USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820, USA.

Published: March 2018

AI Article Synopsis

  • Managed honey bee populations are experiencing significant losses due to various pathogens, including fungi, parasites, and viruses.
  • Current beekeeping practices struggle with a lack of universal treatments for these widespread issues, leading to a need for effective sterilization techniques for hive equipment.
  • Research indicates that gamma irradiation can effectively inactivate certain pathogens, suggesting it could be a viable method to reduce disease spread and improve colony health, though some viruses remain resistant to this treatment.

Article Abstract

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2018.02.011DOI Listing

Publication Analysis

Top Keywords

gamma irradiation
16
honey bee
12
pathogens
6
gamma
4
irradiation inactivates
4
honey
4
inactivates honey
4
bee
4
bee fungal
4
fungal microsporidian
4

Similar Publications

Unlabelled: Accurate estimation of the Lung Shunt Fraction (LSF) is a standard of care in yttrium-90 ( Y) radioembolization treatment planning to prevent excessive lung irradiation due to arterio-venous shunting in the liver. LSF is assessed using Tc macroaggregated albumin ( Tc-MAA) imaging, but this approach adds risk, complexity, and expense to the treatment planning. This study investigates the potential of Contrast-Enhanced Computed Tomography (CECT) as a non-invasive alternative for LSF estimation.

View Article and Find Full Text PDF

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Quality assurance practices performed before treatment are believed to identify various potential errors. In this study, 2-dimensional (2D) dosimetric results were analyzed by making some intentional mistakes in six different treatment plans. In this way, the detectability of errors was investigated.

View Article and Find Full Text PDF

Introduction: Although CAR-T cell therapy has limited efficacy against solid tumors, it has been hypothesized that prior treatment with Image-Guided Radiation Therapy (IGRT) would increase CAR-T cell tumor infiltration, leading to improved antigen specific expansion of CAR-T cells.

Methods: To test this hypothesis in a metastatic triple negative breast cancer (TNBC) model, we engineered two anti-CEA single-chain Fab (scFab) CAR-T cells with signaling domains from CD28zeta and 4-1BBzeta, and tested them and .

Results: The anti-CEA scFab CAR-T cells generated from three different human donors demonstrated robust expression, expansion, and lysis of only CEA-positive TNBC cells, with the CD28z-CAR-T cells showing the highest cytotoxicity.

View Article and Find Full Text PDF

This work reports experimental Ge(d,n)As cross sections producing Arsenic-71 (t = 65.3 h, 28% β), a potentially useful diagnostic radionuclide. Target stacks containing two Ge foils, a Ni monitor foil, and an Al degrader were irradiated with 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!