Whether plants are able to adapt to environmental changes depends on their genetic characteristics and phenotypic plastic responses. We investigated the phenotypic responses of 7 populations of an important dominant species in semi-arid steppe of China - Stipa grandis, and then distinguished which adaptive mechanism(s), phenotypic plasticity or local adaptation, was/were involved in this species to adapt to environmental changes. (1) All traits were significantly influenced by the interaction of population and growth condition and by population in each condition, and inter-population variability (CV) was larger in the field than in the common garden for 8/9 traits, indicating that both phenotypic plasticity and genetic differentiation controlled the phenotypic differences of S. grandis. (2) From a functional standpoint, the significant relationships between the values of traits in the common garden and the environmental variables in their original habitats couldn't support local habitat adaptation of these traits. (3) Low CV, low quantitative differentiation among populations (Q ), and low plasticity shown in the western populations indicated the very low adaptive potential of S. grandis to environmental changes. (4) From the original habitats to the common garden which is far away from S. grandis distribution region, positive phenotypic responses were found in several populations, indicating that some original habitats have become unfavorable for S. grandis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816645PMC
http://dx.doi.org/10.1038/s41598-018-21557-wDOI Listing

Publication Analysis

Top Keywords

phenotypic plasticity
12
environmental changes
12
the common garden
12
plasticity local
8
local adaptation
8
stipa grandis
8
semi-arid steppe
8
steppe china
8
adapt environmental
8
responses populations
8

Similar Publications

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Habituation of the biological response to repeated psychosocial stress: a systematic review and meta-analysis.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:

Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).

View Article and Find Full Text PDF

Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres-the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions.

View Article and Find Full Text PDF

Human cancer cell lines are the mainstay of cancer research. Recent reports showed that highly mutated adult carcinoma cell lines (mainly HeLa and MCF-7) present striking diversity across laboratories and that long-term continuous culturing results in genomic/transcriptomic heterogeneity with strong phenotypical implications. Here, we hypothesize that oligomutated pediatric sarcoma cell lines mainly driven by a fusion transcription factor, such as Ewing sarcoma (EwS), are genetically and phenotypically more stable than the previously investigated adult carcinoma cell lines.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!