A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived ( = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; = 0.008] and overall survival (HR, 0.12; = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877960 | PMC |
http://dx.doi.org/10.1073/pnas.1719264115 | DOI Listing |
World J Urol
January 2025
Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, Strasbourg, France.
Purpose: Surgery remains the cornerstone of localized renal cell carcinoma (RCC) care. Pembrolizumab has recently been recommended as a standard of care for RCC patients who are at high risk of recurrence. Data regarding the efficacy of ICIs either alone or in combination with ICIs or VEGF TKIs for VTT shrinkage are scarce.
View Article and Find Full Text PDFInt Immunol
January 2025
Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.
View Article and Find Full Text PDFCancer Med
January 2025
Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China.
Purpose: Recent research (Li et al. 2021) suggests an upregulated expression and activation of H1 receptors on macrophages in the tumor microenvironment, and concomitant H1-antihistamine use is associated with improved overall survival in patients with lung and skin cancers receiving immunotherapy. Therefore, we retrospectively evaluated the impacts of H1-antihistamine use in cancer patients during immunotherapy.
View Article and Find Full Text PDFCells
December 2024
Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!