Antibacterial Weapons: Targeted Destruction in the Microbiota.

Trends Microbiol

Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ - Centre National de la Recherche Scientifique (CNRS) UMR7255, Marseille, France. Electronic address:

Published: April 2018

The intestinal microbiota plays an important role in health, particularly in promoting intestinal metabolic capacity and in maturing the immune system. The intestinal microbiota also mediates colonization resistance against pathogenic bacteria, hence protecting the host from infections. In addition, some bacterial pathogens deliver toxins that target phylogenetically related or distinct bacterial species in order to outcompete and establish within the microbiota. The most widely distributed weapons include bacteriocins, as well as contact-dependent growth inhibition and type VI secretion systems. In this review, we discuss important advances about the impact of such antibacterial systems on shaping the intestinal microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2018.01.006DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
12
microbiota
5
antibacterial weapons
4
weapons targeted
4
targeted destruction
4
destruction microbiota
4
intestinal
4
microbiota intestinal
4
microbiota plays
4
plays role
4

Similar Publications

The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.

View Article and Find Full Text PDF

Curcuminoids, found in turmeric ( L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored.

View Article and Find Full Text PDF

Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder.

Food Funct

January 2025

Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.

An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.

View Article and Find Full Text PDF

Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs.

mSystems

January 2025

Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.

Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.

View Article and Find Full Text PDF

Microbiome analysis has become a crucial tool for basic and translational research due to its potential for translation into clinical practice. However, there is ongoing controversy regarding the comparability of different bioinformatic analysis platforms and a lack of recognized standards, which might have an impact on the translational potential of results. This study investigates how the performance of different microbiome analysis platforms impacts the final results of mucosal microbiome signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!