A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment. | LitMetric

Background And Aims: Climate forecasts suggest that [CO2] in the atmosphere will continue to increase. Structural and ecophysiological responses to elevated air [CO2] (e[CO2]) in tree species are contradictory due to species-dependent responses and relatively short-term experiments. It was hypothesized that long-term exposure (4 year) to e[CO2] would change canopy structure and function of Coffea arabica trees.

Methods: Coffee plants were grown in a FACE (free air CO2 enrichment) facility under two air [CO2]: actual and elevated (actual + approx. 200 μL CO2 L-1). Plants were codified following the VPlants methodology to obtain coffee mock-ups. Plant canopies were separated into three 50 cm thick layers over a vertical profile to evaluate their structure and photosynthesis, using functional-structural plant modelling.

Key Results: Leaf area was strongly reduced on the bottom and upper canopy layers, and increased soil carbon concentration suggested changes in carbon partitioning of coffee trees under e[CO2]. Increased air [CO2] stimulated stomatal conductance and leaf photosynthesis at the middle and upper canopy layers, increasing water-use efficiency. Under e[CO2], plants showed reduced diameter of the second-order axes and higher investment in the youngest third to fifth-order axes.

Conclusions: The responses of Arabica coffee grown under long-term exposure to e[CO2] integrated structural and functional modifications, which balanced leaf area loss through improvements in leaf and whole-plant photosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906918PMC
http://dx.doi.org/10.1093/aob/mcy011DOI Listing

Publication Analysis

Top Keywords

air [co2]
12
structural functional
8
coffee trees
8
free air
8
air co2
8
co2 enrichment
8
long-term exposure
8
leaf area
8
upper canopy
8
canopy layers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!