AI Article Synopsis

  • Active Pharmaceutical Ingredients (API) raw material variability is often overlooked in pharmaceutical process development due to limited drug substance availability, despite its potential impact on processability.
  • Recent research emphasizes the importance of understanding how material synthesis and variability can affect product quality throughout the development lifecycle.
  • The study characterizes eight different API batches using multivariate data analysis, identifying three principal components that account for 92.9% of the variability, which can help in future drug product development by evaluating the influence of raw material variability.

Article Abstract

Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flowability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any other compound which is prone to batch-to-batch variability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2018.02.017DOI Listing

Publication Analysis

Top Keywords

raw material
24
material variability
24
api raw
16
drug product
12
material
9
variability
8
active pharmaceutical
8
api
8
drug substance
8
product development
8

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

Introduction: Owing to its high prevalence, colossal potential of chemoresistance, metastasis, and relapse, breast cancer (BC) is the second leading cause of cancer-related fatalities in women. Several treatments (eg, chemotherapy, surgery, radiations, hormonal therapy, etc.) are conventionally prescribed for the treatment of BC; however, these are associated with serious systemic aftermaths.

View Article and Find Full Text PDF

Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.

Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!