Lead (Pb) is a neurotoxic heavy metal, but the mechanism of its neurotoxicity is not clearly understood. Expression of metallothioneins (MTs) is induced in response to heavy metal exposure as a protective mechanism against heavy metal toxicity. There are several isoforms of MTs (MT-1 to 4), of which MT-3 is the neuron specific isoform, which also has neurite growth inhibitory effects. Whereas, the induction of MT-1 and 2 in response to Pb has been reported, the effect of Pb on the expression of MT-3 in the brain has not been documented. This study aimed at investigating the effect of Pb exposure on the expression of MT-3 in the cerebrum and hippocampus. Wistar rat pups were exposed to Pb via their dams' drinking water (0.2% lead acetate in deionized water) from postnatal day (PND) 0 to 21 and directly via drinking water until PND30. Expression of MT-3 was measured by Western blot and quantitative RT-PCR. MT-3 localization was done by immunohistochemistry. Divalent metal ions were analysed by atomic absorption spectrophotometry. Levels of Pb in blood and cerebrum were significantly increased, while that of copper (Cu), zinc (Zn) and manganese (Mn) were significantly decreased in the Pb-exposed rats at both PND21 and PND30. MT-3 protein was significantly increased in the cerebrum (by 2.5-fold) and in hippocampus (1.4 to 3.2-fold) in both PND21 and PND30 Pb-exposed rats over controls. MT-3 gene expression also increased in the cerebrum (by 42%), and in the hippocampus (by 65% and 43% in the PND21 and PND30 rats, respectively), in the Pb-exposed rats over controls, but the increase was statistically significant (p < 0.05) only in the PND30 rats. Pb exposure significantly increased (p < 0.05) percentage of MT-3 immunoreactive cells in Cornu Ammonis and dentate gyrus regions in the PND21 rats, and in the Cornu Ammonis 1, dentate gyrus and cortex regions in the PND30 rats. Our data thus provide convincing evidence that exposure to low levels of Pb during preweaning period increases the expression of MT-3 in the brain of rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2018.02.008DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
expression mt-3
12
pb-exposed rats
12
pnd21 pnd30
12
drinking water
8
increased cerebrum
8
rats controls
8
mt-3
7
expression
6
rats
5

Similar Publications

Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF

Prostate cancer (PC) is a common malignancy among men globally. Although genetic, hormonal, and environmental factors contribute to its development, the role of heavy metals remains unclear. This study evaluated serum levels of arsenic, cadmium, lead, mercury, and nickel in PC patients compared to healthy controls.

View Article and Find Full Text PDF

A novel spectroscopy-deep learning approach for aqueous multi-heavy metal detection.

Anal Methods

January 2025

Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Addressing heavy metal contamination in water bodies is a critical concern for environmental scientists. Traditional detection methods are often complex and costly. Recent advancements in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), have shown significant potential in analytical chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how bauxite mining impacts soil quality and microbial health in mining-adjacent areas, which has been under-researched compared to other types of mining like coal and copper.
  • Soil samples from locations near an active bauxite mine showed high levels of heavy metals (like chromium and lead), acidity, and aluminum, negatively affecting important microbial indicators such as enzyme activity and microbial biomass.
  • The research found that the concentrations of organic carbon could help mitigate some of the acidity effects, with acid phosphatase enzyme being a key factor in differences seen across various sampling sites.
View Article and Find Full Text PDF

This study evaluates the environmental and human health impact of sewage sludge generated in the Indo-Gangetic region (Uttarakhand and Uttar Pradesh) used as organic fertilizer and landfill disposal. The research conducts a comprehensive risk assessment, including physicochemical and heavy metals analysis, on triplicate sludge samples obtained from 30 sewage treatment plants. The study provides both qualitative and quantitative insights into potential hazards associated with sewage sludge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!