Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans.

Biomacromolecules

KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden.

Published: March 2018

The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.7b01670DOI Listing

Publication Analysis

Top Keywords

molar mass
20
mucus barrier
12
low molar
12
mass chitosan
12
mucus
9
barrier properties
8
chitosans mucus
8
mucus gel
8
chitosan variants
8
degree polymerization
8

Similar Publications

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

The influence of the molecular weight and chemical structure of polyphenylene sulfone (PPSU) end groups on the formation of the porous structure of ultrafiltration (UF) hollow fiber membranes was investigated. Polymers with a molecular weight ranging from 67 to 81 kg/mol and with a hydroxyl-to-chlorine end group ratio ranging from 0.43 to 17.

View Article and Find Full Text PDF

Preparation, Optical, and Heat Resistance Properties of Phenyl-Modified Silicone Gel.

Polymers (Basel)

December 2024

Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing MeSiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high hardness of crosslinked products when using phenyltris(dimethylsiloxy)silane or 1,1,5,5-tetramethyl-3,3-diphenyl trisiloxane as crosslinking agents in the preparation of silicone gel. NMR, FT-IR, and GPC characterized the structure and molecular weight information of the prepared oligomers.

View Article and Find Full Text PDF

An accurate and robust multicomponent quantitative analysis method: Molar mass coefficient method.

J Chromatogr A

December 2024

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. Electronic address:

Multicomponent quantitative analysis (MCQA) is necessary for comprehensively characterizing the quality of complex samples, including medicines, foods. However, the limited supply of reference substances and the high costs associated with testing hinder the application of the MCQA using the external standard (ES) method. Here we propose a Molar Mass Coefficient (MMC) method for the quantification of multiple compounds with identical chromophore utilizing a single reference compound (SRC) by a UV detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!