In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9-11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815614 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193062 | PLOS |
J Small Anim Pract
January 2025
Department of Veterinary Science, University of Turin, Grugliasco, Italy.
Objectives: To evaluate the perioperative efficacy of a modified supratemporal retrobulbar block in dogs undergoing ocular surgery.
Materials And Methods: In this prospective randomized clinical trial, dogs were premedicated with dexmedetomidine (1 mcg/kg im) and methadone (0.1 mg/kg im), induced with propofol to effect and maintained with isoflurane (FE'Iso 1.
Pilot Feasibility Stud
January 2025
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
BMC Anesthesiol
January 2025
Department of Anesthesiology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China.
Background: Subarachnoid anesthesia is the primary anesthetic method for elective cesarean section surgery, characterized by rapidly taking effect and reliable analgesia. However, subarachnoid anesthesia is prone to cause a high block level, resulting in a high incidence of maternal hypotension. How to reduce the incidence of maternal hypotension under subarachnoid anesthesia is a practical problem that needs to be solved urgently in clinical practice.
View Article and Find Full Text PDFPlacenta
January 2025
Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China. Electronic address:
Introduction: Pre-eclampsia (PE) is a pregnancy complication featuring hypertension and proteinuria. Metformin exerts clinically preventive effects on PE with an unspecified mechanism.
Methods: Placental tissues from PE patients and normal pregnant (NP) women were collected.
R Soc Open Sci
January 2025
School of Biological Sciences, University of Bristol, Bristol, UK.
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish () across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!