A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of regenerative and flexible fibroin-based wound dressings. | LitMetric

Development of regenerative and flexible fibroin-based wound dressings.

J Biomed Mater Res B Appl Biomater

Department of Engineering for Innovation, University of Salento, Lecce, Italy.

Published: January 2019

Skin injuries represent a health problem with consequences in terms of morbidity, disability and life quality. Numerous strategies have been developed for the treatment of wounds, including skin substitutes, biomembranes, scaffolds, and smart dressings. The excellent properties of fibroin can be exploited for the development of advanced wound dressing biomaterials, aiming at promoting the wound healing process. In this work, silk fibroin films modified through the addition of glucose were developed to enhance flexibility of medical device without affecting the biocompatibility, to promote wound healing and to improve the patient well-being. The glucose/fibroin blend was characterized through Fourier transform infrared spectroscopy and differential scanning calorimetry to analyze the protein structure. Absorption capacity, mechanical properties, wettability and bacterial biofilm formation on silk fibroin films were also analyzed to study the effect of the addition of a plasticizer on the properties of the wound dressing. The stability of the films was analyzed through in vitro biodegradability tests. The biocompatibility and regenerative properties were demonstrated through appropriate cellular assays. The results demonstrated that the addition of glucose induced crystallization and provided good flexibility and absorption capacity of silk fibroin films. Glucose modified silk fibroin films were biocompatible and had a positive effect in promoting the wound closure. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 7-18, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34090DOI Listing

Publication Analysis

Top Keywords

silk fibroin
16
fibroin films
16
wound dressing
8
promoting wound
8
wound healing
8
addition glucose
8
absorption capacity
8
films analyzed
8
wound
6
fibroin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!