Insights into the formation mechanism of two-dimensional lead halide nanostructures.

Nanoscale

Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.

Published: March 2018

We present a colloidal synthesis strategy for lead halide nanosheets with a thickness of far below 100 nm. Due to the layered structure and the synthesis parameters the crystals of PbI are initially composed of many polytypes. We propose a mechanism which gives insight into the chemical process of the PbI formation. Further, we found that the crystal structure changes with increasing reaction temperature or by performing the synthesis for longer time periods changing for the final 2H structure. In addition, we demonstrate a route to prepare nanosheets of lead bromide as well as lead chloride in a similar way. Lead halides can be used as a detector material for high-energy photons including gamma and X-rays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831117PMC
http://dx.doi.org/10.1039/c7nr09564cDOI Listing

Publication Analysis

Top Keywords

lead halide
8
lead
5
insights formation
4
formation mechanism
4
mechanism two-dimensional
4
two-dimensional lead
4
halide nanostructures
4
nanostructures colloidal
4
colloidal synthesis
4
synthesis strategy
4

Similar Publications

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.

View Article and Find Full Text PDF

Metal halide perovskites, including some of their related perovskitoid structures, form a semiconductor class of their own, which is arousing ever-growing interest from the scientific community. With halides being involved in the various structural arrangements, namely, pure corner-sharing MX (M is metal and X is halide) octahedra, for perovskite networks, or alternatively a combination of corner-, edge-, and/or face-sharing for related perovskitoids, they represent the ideal probe for characterizing the way octahedra are linked together. Well known for their inherently large quadrupolar constants, which is detrimental to the resolution of nuclear magnetic resonance spectroscopy, most abundant halide isotopes (Cl, Br, I) are in turn attractive for magnetic field-free nuclear quadrupolar resonance (NQR) spectroscopy.

View Article and Find Full Text PDF

Tuning the selectivity and improving the activity of photocatalysts are among the main bottlenecks for the conversion of CO to value-added chemicals. Recently, lead-free halide perovskites have been extensively investigated as photocatalysts for the photoreduction of CO. Herein, we report a composite photocatalyst using CsBiCl and Ir/IrO for the photoreduction of CO.

View Article and Find Full Text PDF

Stable and Lead-Free Perovskite Hemispherical Photodetector for Vivid Fourier Imaging.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

The filterless single-pixel imaging technology is anticipated to hold tremendous competitiveness in diverse imaging applications. Nevertheless, achieving single-pixel color imaging without a filter remains a formidable challenge. Here a lead-free perovskite hemispherical photodetector is reported for filterless single-pixel color imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!