Conventional sampling techniques for clinical pharmacokinetic studies often require the removal of large blood volumes from patients. This can result in a physiological or emotional burden, particularly for neonates or pediatric patients. Antibiotic pharmacokinetic studies are typically performed on healthy adults or general ward patients. These may not account for alterations to a patient's pathophysiology and can lead to suboptimal treatment. Microsampling offers an important opportunity for clinical pharmacokinetic studies in vulnerable patient populations, where smaller sample volumes can be collected. This systematic review provides a description of currently available microsampling techniques and an overview of studies reporting the quantitation and validation of antibiotics using microsampling. A comparison of microsampling to conventional sampling in clinical studies is included.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2017-0269DOI Listing

Publication Analysis

Top Keywords

conventional sampling
12
pharmacokinetic studies
12
sampling techniques
8
systematic review
8
clinical pharmacokinetic
8
microsampling
5
studies
5
clinical
4
clinical application
4
application microsampling
4

Similar Publications

The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.

View Article and Find Full Text PDF

Background: Dynamic Coronary Roadmap (DCR) is a new PCI method that may reduce contrast dose and contrast-associated acute kidney injury (CA-AKI) risk. This paper evaluates DCR-guided PCI versus standard angiography PCI for contrast usage, procedure time, and CA-AKI risk.

Methods: On May 1, 2024, we searched PubMed, Scopus, Embase, Cochrane Library, and clinicaltrials.

View Article and Find Full Text PDF

Background: This study aimed to explore the accuracy of third-generation nanopore sequencing to diagnose extrapulmonary tuberculosis (EPTB).

Methods: Samples were collected from the lesions of 67 patients with suspected EPTB admitted between April 2022 and August 2023. Nanopore sequencing, acid-fast bacilli (AFB) staining, DNA testing, and X-pert and mycobacterial cultures were performed.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!