The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835776PMC
http://dx.doi.org/10.1038/cr.2018.17DOI Listing

Publication Analysis

Top Keywords

m-aaa proteases
24
mitochondrial calcium
16
purkinje cells
12
proteases mitochondrial
8
calcium homeostasis
8
pleiotropic functions
8
mouse model
8
m-aaa
7
mitochondrial
6
calcium
5

Similar Publications

Cerebral ischemia-reperfusion (I/R) injury as the consequence of revascularization after ischemic stroke is associated with mitochondrial dysfunction, oxidative stress, and neuron loss. In this study, we used a deprivation/reoxygenation (OGD/R) model to determine whether interactions between Netrin-1, AKT, and the mitochondrial AAA protease AFG3L2 could influence mitochondrial function in neurons after I/R. We found that Netrin-1 protects primary cortical neurons from OGD/R-induced cell death and regulates mitochondrial reactive oxygen species (ROS) and Ca levels.

View Article and Find Full Text PDF

The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development.

View Article and Find Full Text PDF

Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy.

Neurol Genet

June 2020

MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France.

Article Synopsis
  • The study is focused on improving how we diagnose dominant optic atrophy (DOA), which is the most common inherited eye disease that affects the optic nerve.
  • Researchers looked at 22 specific genes in patients with DOA using advanced sequencing technology to find new genetic changes.
  • They discovered new genetic variants in two important genes that are involved in the functioning of mitochondria (the energy powerhouses of cells), which help explain why some symptoms of DOA differ from other related diseases.
View Article and Find Full Text PDF

SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca influx, and regulation of mitochondrial permeability transition pore opening.

J Biol Chem

July 2019

Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and. Electronic address:

Article Synopsis
  • The study explores the role of spastic paraplegia 7 (SPG7) in regulating the mitochondrial permeability transition pore (mPTP), which has conflicting findings in recent research.
  • Researchers discovered that loss of the SPG7 gene leads to increased resistance to calcium-induced mPTP opening, which is independent of cyclophilin D.
  • Findings indicate that SPG7 influences the formation of mitochondrial calcium uniporter (MCU) complexes, suggesting it does not directly form part of the mPTP but can modulate its function by affecting basal mitochondrial calcium levels.
View Article and Find Full Text PDF

The progressive accumulation of dysfunctional mitochondria is implicated in aging and in common diseases of the elderly. To oppose this occurrence, organisms employ a variety of strategies, including the selective degradation of oxidatively damaged and misfolded mitochondrial proteins. Genetic studies in yeast indicate that the ATPase Associated with diverse cellular Activities (AAA) family of mitochondrial proteases account for a substantial fraction of this protein degradation, but their metazoan counterparts have been little studied, despite the fact that mutations in the genes encoding these proteases cause a variety of human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!