Dissimilar life features of Rotifera, Cladocera and Copepoda enable these organisms to respond differently to changes in the hydrological regime which influence alterations in environmental characteristics. We investigated the effect of habitat heterogeneity (e.g. eupotamal, parapotamal, palaeopotamal) on individual zooplankton group assemblages and biodiversity indices (α, β and γ diversity) during hydro regime change in floodplain waterbodies. Dissolved oxygen and organic nitrogen concentrations changed significantly among hydrological states while water depth was affected by both site and hydro regime replacement. Each studied site supported different zooplankton assemblage that highly depended on species-specific responses to hydro regime change. Also, individual zooplankton groups exhibited different correlations with specific environmental parameters regarding site change. Throughout the study, rotifers' local (α) and among-community (β) diversities were susceptible to the site and inundation change while the microcrustacean biodiversity pattern diverged. Copepods highly discriminated different habitat types and hydrological phases at the regional scale (γ diversity), while we found a complete lack of biodiversity dependence on both site and hydrology for Cladocera. Our results show that heterogeneous environments support the development of different zooplankton assemblages that express the within-group dissimilarities. They also point to the importance of identifying processes in hydrologically variable ecosystems that influence biodiversity patterns at an individual zooplankton group level. Our results suggest the use of appropriate zooplankton groups as biological markers in natural habitats and stress the importance of proper management in preserving biodiversity in floodplain areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-018-6524-7DOI Listing

Publication Analysis

Top Keywords

individual zooplankton
12
hydro regime
12
habitat heterogeneity
8
zooplankton group
8
regime change
8
zooplankton groups
8
zooplankton
7
biodiversity
5
site
5
impact habitat
4

Similar Publications

Chromosome-level genome assembly and annotation of Japanese anchovy (Engraulis japonicus).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.

The Japanese anchovy (Engraulis japonicus), a finfish with the largest biomass of a single species in the Yellow and East China Seas, plays an important pivotal role in converting zooplanktons into high trophic fish in the food web. As a result, the fish is regard as a key species in its habiting ecosystem. However, the lack of genomic resources hampers our understanding of its genetic diversity and differentiation, as well as the evolutionary dynamics.

View Article and Find Full Text PDF

Although terrestrial organic matter is known to sustain food chains, its impact on zooplankton communities in lakes within urbanized areas remains unclear. This study analyzed a comprehensive, decade-long dataset (1998-2007) that included COD, BOD, and monthly zooplankton records from Lake Taihu to assess the effects of anthropogenic organic matter. Significant spatial variations in COD and BOD were observed across different areas of Lake Taihu (p < 0.

View Article and Find Full Text PDF

Modeling nearshore total phosphorus in Lake Michigan using linked hydrodynamic and water quality models.

Ecol Modell

July 2024

National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI.

Article Synopsis
  • Lake Michigan's nearshore regions, influenced significantly by nearby rivers, show total phosphorus (TP) concentrations exceeding the GLWQA's target of 7 μg L, raising concerns about nutrient-related issues.
  • A monitoring program utilizing phosphorus-based models linked to hydrodynamic models was implemented to assess these nearshore conditions, revealing variability in TP concentrations due to the area's dynamic nature.
  • The study found that while model predictions varied, they successfully illustrated temporal and spatial trends, indicating that hydrodynamics and river loads critically influence TP levels, thereby making the TP model a valuable tool for future assessments.
View Article and Find Full Text PDF

The cyclopoid copepod species Apocyclops royi has attracted significant attention due to its importance in marine food webs and its role as a vital food source for many marine organisms, particularly marine fish larvae. This study aims to understand the activity patterns, osmoregulation mechanisms, and physiological adaptations of A. royi in response to acute decreasing salinities.

View Article and Find Full Text PDF

Mesozooplankton plays a pivotal role within marine food webs. However, there is a paucity of studies examining the size-spectra and trophic efficiency of these communities in tropical neritic and oceanic waters. Here, normalised biovolume (NBSS) and normalised numbers size-spectra (NNSS) were fitted on zooplankton data from the southwestern tropical Atlantic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!