Download full-text PDF

Source
http://dx.doi.org/10.1007/s00270-018-1900-9DOI Listing

Publication Analysis

Top Keywords

spin novel
4
novel method
4
method inferior
4
inferior vena
4
vena cava
4
cava ivc
4
ivc filter
4
filter detachment
4
detachment snare
4
snare entanglement
4

Similar Publications

Phonon Involved Photoluminescence of Mn Ions Doped CsPbCl Micro-Size Perovskite Assembled Crystals.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.

Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.

View Article and Find Full Text PDF

Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.

Redox Rep

December 2025

Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.

View Article and Find Full Text PDF

The quantum anomalous Hall effect (QAHE) demonstrates the potential for achieving quantized Hall resistance without the need for an external magnetic field, making it highly promising for reducing energy loss in electronic devices. Its realization and research rely heavily on precise first-principles calculations, which are essential for analyzing the electronic structures and topological properties of novel two-dimensional (2D) materials. This review article explores the theoretical progress of QAHE in 2D hexagonal monolayers with strong spin-orbit coupling and internal magnetic ordering.

View Article and Find Full Text PDF

Magnetization switching by charge current without a magnetic field is essential for device applications and information technology. It generally requires a current-induced out-of-plane spin polarization beyond the capability of conventional ferromagnet/heavy-metal systems, where the current-induced spin polarization aligns in-plane orthogonal to the in-plane charge current and out-of-plane spin current. Here, a new approach is demonstrated for magnetic-field-free switching by fabricating a van-der-Waals magnet and oxide FeGeTe/SrTiO heterostructure.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!