Intercropping studies usually focus on yield advantage and interspecific interactions but few quantify temporal niche differentiation and its relationship with intercropping yield advantage. A field experiment conducted in northwest China in 2013 and 2014 examined four intercropping systems (oilseed rape/maize, oilseed rape/soybean, potato/maize, and soybean/potato) and the corresponding monocultures. Total dry matter data collected every 20 d after maize emergence were fitted to logistic models to investigate the temporal dynamics of crop growth and interspecific interactions. All four intercropping systems showed significant yield advantages. Temporal niche complementarity between intercropped species was due to differences in sowing and harvesting dates or the time taken to reach maximum daily growth rate or both. Interspecific interactions between intercropped species amplified temporal niche differentiation as indicated by postponement of the time taken to reach maximum daily growth rate of late-maturing crops (i.e. 21 to 41 days in maize associated with oilseed rape or potato). Growth trajectories of intercropped maize or soybean recovered after the oilseed rape harvest to the same values as in their monoculture on a per plant basis. Amplified niche differentiation between crop species depends on the identity of neighboring species whose relative growth rate is crucial in determining the differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814522 | PMC |
http://dx.doi.org/10.1038/s41598-018-21414-w | DOI Listing |
J Pharm Anal
December 2024
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India.
High-resolution insights into the nucleotide arrangement within an organism's genome are pivotal for deciphering its genetic composition, function, and evolutionary trajectory. Over the years, nucleic acid sequencing has been instrumental in driving significant advancements in genomics and molecular biology. The advent of high-throughput or next-generation sequencing (NGS) technologies has revolutionized whole genome sequencing, revealing novel and intriguing features of genomes, such as single nucleotide polymorphisms and lethal mutations in both coding and non-coding regions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
Growing emission of environmentally-hazardous greenhouse pollutants (especially CO) has motivated the researchers to apply gas-liquid membrane contactors as an easy-to-operate and cost-effective technique for increasing their separation efficiency from different sources. In the current decades, ionic liquids (ILs) have shown their potential in the gas separation industry owing to their noteworthy advantages such as great capacity, excellent adjustability and suitable thermal/chemical stability compared to commonly-employed amine absorbents. This investigation aims to analytically/numerically determine the separation yield of CO from CO₂/N gaseous flow using novel -Ethyl-3-methylimidazolium dicyanamide ([emim][CN]) IL inside the gas-liquid contactor.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Optimizing oocyte maturation and embryo culture media could enhance in vitro embryo production. The purpose of the present study was to investigate the role of supplementing one carbon metabolism (OCM) substrates and its cofactors (Cystine, Zinc, Betaine, B2, B3, B6, B12 and 5-methyltetrahydrofolate) in maturation and/or embryo culture media on the rate of blastocyst formation and pregnancy outcomes following the transfer of the resulting blastocysts in bovines. In the first experiment, 2537 bovine oocytes were recovered from slaughterhouse ovaries and then matured either in conventional maturation medium (IVM) or IVM supplemented with OCM substrates (Sup-IVM).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!