Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aan8097 | DOI Listing |
Ecol Lett
December 2024
Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden.
Evolutionary adaptation occurs when individuals vary in access to fitness-relevant resources and these differences in 'material wealth' are heritable. It is typically assumed that the inheritance of material wealth reflects heritable variation in the phenotypic abilities needed to acquire material wealth. We scrutinise this assumption by investigating additional mechanisms underlying the inheritance of material wealth in collared flycatchers.
View Article and Find Full Text PDFChromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency.
View Article and Find Full Text PDFNew Phytol
December 2024
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan.
The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.
View Article and Find Full Text PDFOecologia
December 2024
Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
Accurate identification of decreasing trends is a prerequisite for successful conservation, but can be challenging when immigration compensates local declines in abundance. Here, we show that a potential declining trend driven by low vital rates was overridden and converted into a spectacular increase by massive immigration into the population of a semi-social raptor, the black kite Milvus migrans, breeding in a highly contaminated area near a major landfill. Immigration was promoted by a growing food-base of live prey, coupled with the attraction exerted by the progressive gathering of a large flock of non-breeders at the area, resulting in an "attraction spiral" that lured large numbers of breeders to settle into a contaminated population incapable of self-sustenance.
View Article and Find Full Text PDFJ Cell Sci
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal.
Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!