Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS.

Stem Cell Res

Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, Italy; Institute of Molecular Biology and Pathology of CNR, Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Italy. Electronic address:

Published: March 2018

Long non-coding RNAs (lncRNAs) are currently recognized as crucial players in nervous system development, function and pathology. In Amyotrophic Lateral Sclerosis (ALS), identification of causative mutations in FUS and TDP-43 or hexanucleotide repeat expansion in C9ORF72 point to the essential role of aberrant RNA metabolism in neurodegeneration. In this study, by taking advantage of an in vitro differentiation system generating mouse motor neurons (MNs) from embryonic stem cells, we identified and characterized the long non-coding transcriptome of MNs. Moreover, by using mutant mouse MNs carrying the equivalent of one of the most severe ALS-associated FUS alleles (P517L), we identified lncRNAs affected by this mutation. Comparative analysis with human MNs derived in vitro from induced pluripotent stem cells indicated that candidate lncRNAs are conserved between mouse and human. Our work provides a global view of the long non-coding transcriptome of MN, as a prerequisite toward the comprehension of the still poorly characterized non-coding side of MN physiopathology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2018.01.037DOI Listing

Publication Analysis

Top Keywords

long non-coding
12
motor neurons
8
stem cells
8
non-coding transcriptome
8
characterization lncrna
4
lncrna transcriptome
4
transcriptome mesc-derived
4
mesc-derived motor
4
neurons implications
4
implications fus-als
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!