A upflow anaerobic sludge blanket reactor was operated combined to a membrane aerated biofilm reactor for sulfate removal and for elemental sulfur reclamation. A commercial silicon tube was used as an oxygen delivery diffuser. The process achieved high rates of sulfide removal from the liquid phase (90%). The hydrogen sulfide removal was influenced by the pH value and at pH value of 7.5, 98% of the HS was removed. The elemental sulfur was observed inside the membrane, with content in the biomass of 21%. Through the massive sequencing of the samples, the microbial community diversity and the stratification of biomass inside the silicon tube was demonstrated, confirming the presence of sulfide-oxidizing bacteria on the membrane wall. The most important genera found related to the sulfur cycle were , and .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2018.1441329 | DOI Listing |
J Hazard Mater
December 2024
Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions.
View Article and Find Full Text PDFWater Res
March 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China. Electronic address:
The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system.
View Article and Find Full Text PDFImmun Inflamm Dis
December 2024
Department of Otorhinolaryngology, Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia.
Background/objectives: Tissue remodeling, including dense eosinophil infiltration, is essential for forming inflammatory nasal polyps (NPs) and the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). Toxic eosinophil major basic protein (MBP) damages the sinus mucosa epithelium and lamina propria, which initiates reparative processes leading to tissue remodeling. MBP specifically binds to BMK-13 antibodies allowing immunohistochemical (IHC) tissue staining for eosinophils.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada.
Dissolved gases such as oxygen (DO) and ammonia (dNH) are among the most consequential parameters for the assessment of water quality. Since the concentrations of DO and dNH are interdependent through the nitrogen cycle, simultaneous monitoring can be useful in many applications. For example, in wastewater treatment, aeration baths are used to adjust the rate of removal of ammonia by the bioactive sludge.
View Article and Find Full Text PDFWater Res X
December 2024
College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
Linear alkylbenzene sulfonate (LAS) can be thoroughly mineralized within sufficient oxygen (O), but which is energy intensive and may causes serious foaming problem. Although cometabolism can achieve efficient LAS removal within a wide range of O dosages, how O dosage systematically affects LAS metabolic pathway is still unclear. Here, membrane aerated biofilm reactor (MABR) enabled accurate O delivery and bulk dissolved oxygen (DO) control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!