Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

J Nanosci Nanotechnol

Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea.

Published: March 2018

The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2018.14969DOI Listing

Publication Analysis

Top Keywords

scan spacing
20
surface roughness
16
process parameters
12
laser power
12
scan rate
12
ni-cr alloy
8
selective laser
8
laser melting
8
scan
8
power scan
8

Similar Publications

Objectives: To explore the reproducibility of the 1.5-T MR imaging (MRI)-based R2* method in measuring the liver iron concentration (LIC) across different MRI scanners, scan parameters, and postprocessing techniques.

Materials And Methods: We performed a systematic search of the PubMed, Embase, Medline, Cochrane Library, and Web of Science databases and identified studies that used the 1.

View Article and Find Full Text PDF

Background/aim: Angiogenesis imaging has been a valuable complement to metabolic imaging with 2-deoxy-2-[F]fluoroglucose (FDG). In our longitudinal study, we investigated the tumour heterogeneity and the relationship between FDG and [Ga]Ga-NODAGA-c(RGDfK) (RGD) accumulation in breast cancer xenografts.

Materials And Methods: Two groups of cell lines, a fast-growing (4T1) and a slow-growing cell line (MDA-MB-HER2+), were inoculated into SCID mice.

View Article and Find Full Text PDF

Light pulses in the femtosecond range require sophisticated methods for their precise temporal characterization. Several techniques have been developed over the past decades that deliver the temporal structure of ultrashort light pulses. Still, there are special cases left that cannot be treated directly by established methods.

View Article and Find Full Text PDF

Triglyceride (TG)/HDL-C ratio (THR) is a surrogate predictor of hyperinsulinemia. To identify novel genetic loci for THR change over time (ΔTHR), we conducted genome-wide association study (GWAS) and genome-wide linkage scan (GWLS) among nondiabetic Europeans from the Long Life Family Study (n = 1,384). Subjects with diabetes or on dyslipidemia medications were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!