Silica nanoparticles with different aspect ratios (A.R.) were tested as reinforcing fillers of styrenebutadiene copolymer (s-SBR) for "green tyres," i.e., tires with lower rolling resistance. A commercial nanosilica with A.R. = 1 (Aerosil® 200) was compared with two nanosilica samples with A.R. = 2 and 4, synthesized by means of an innovative process, to ascertain if the filler shape was significant to improve the composite properties. In addition, bis-triethoxysilylpropyltetrasulfide was grafted onto the particles surface, in order to obtain more hydrophobic materials and to enhance their dispersion in the elastomeric composites: pristine and modified silicas were then compared. Grafting extent was evaluated by thermogravimetric analysis. The surface properties of silicas were investigated by Fourier transform infrared spectroscopy and inverse gas chromatography. s-SBR/silica nanocomposites were then prepared and characterized assessing their dynamic-mechanical properties and carrying out morphological observations by transmission electron microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.15249 | DOI Listing |
J Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFAdv Mater
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315201, China.
Reducing excess electrolytes offers a promising approach to improve the specific energy of electrochemical energy storage devices. However, using lean electrolytes presents a significant challenge for porous electrode materials due to heterogeneous wetting. The spontaneous wetting of nano- or meso-pores within particles, though seldom discussed, adversely affects wetting under lean electrolyte conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
The advent of autonomous nanomotors presents exciting opportunities for nanodrug delivery. However, significant potential remains for enhancing the asymmetry of nanomotors and advancing the development of second near-infrared (NIR-II) light-propelled nanomotors capable of operating within deep tissues. Herein, we developed a dual-ligand assisted anisotropic assembly strategy that enables precise regulation of the interfacial energy between selenium (Se) nanoparticle and periodic mesoporous organosilica (PMO).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!