The purpose of this study was to evaluate the fitness of zirconia cores according to the amount and treated surface of glass infiltration. A maxillary right central incisor customized abutment was milled to have a 6° slope and a 1 mm deep chamfer margin and was manufactured in an intaglio mold using silicone impression material. Fifty-six stone dies were produced by injecting high strength dental stone into a mold and then zirconia cores were milled with CAD/CAM systems. The control group (Control) used non glass-infiltrated zirconia, and the experiment group was divided by one with the glass and distilled water ratio of 1:300 and the other with the ratio of 1:100. Each group was divided into subgroups by glasstreated surface: external surface infiltration, internal surface infiltration, and both surface infiltration. The zirconia cores sintered after glass infiltration were attached to the stone dies and then cut. Afterwards, the absolute marginal discrepancies and internal gaps of the buccal and lingual sides were measured. The buccal absolute marginal discrepancies and lingual internal gaps were influenced by the glass infiltration amount (p < 0.05); while fitness of zirconia core were not affected by the glasstreated surface (p > 0.05). As a result of the above experiments, the glass-infiltrated zirconia cores showed a clinically acceptable fitness, which is within 120 μm. This means that glass infiltration can be clinically used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14886 | DOI Listing |
Clin Pract
November 2024
Department of Prosthodontics, Carol Davila University of Medicine and Pharmacy, 032799 Bucharest, Romania.
Background: The existing literature predominantly examines post and core assessments post-cementation, neglecting the critical pre-cementation phase. Research on the clinical acceptance of dental posts received from dental laboratories before cementation is notably lacking. This study investigates the percentage of zirconia and metal dental posts that are deemed suitable for cementation by clinicians, among the total received from the dental laboratory.
View Article and Find Full Text PDFBMC Oral Health
November 2024
Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
Background: Pulp canal occlusion (PCO) increases the difficulty of root canal treatment as well as tooth preservation and restoration. This is the first case report of successful localization of a calcified root canal under the guidance of a dynamic navigation system (DNS) for complete root canal retreatment and aesthetic restoration after a failed attempt to locate the calcified root canal with a traditional dental operating microscope (DOM).
Case Presentation: The patient was scheduled for root canal treatment for a labially inclined maxillary central incisor and post-core crown restoration with resin veneers in another hospital, but the calcified root canal could not be located with a microscope, so the patient was referred to our department.
J Phys Chem Lett
November 2024
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Zr(μ-O)(μ-OH) node cores are indispensable building blocks for almost all zirconium-based metal-organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states.
View Article and Find Full Text PDFSci Rep
October 2024
Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland.
The results on zirconia-amine bifunctional modification of hierarchically porous silica monoliths for continuous-flow processes ar presented. The study reports the synthesis and properties of the modified porous monoliths and their performance in the tandem process of deacetalization-Knoevenagel condensation reaction. The properties of the materials were studied by thermal analysis, FTIR spectroscopy, XRF and nitrogen adsorption.
View Article and Find Full Text PDFPeerJ
September 2024
Department of Prosthodontics and Dental Implantology, King Faisal University, Al Ahsa, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!