Thymosin β4 (Tβ4) is known to inhibit an inflammatory response and to increase the survival of osteoblasts on titanium (Ti) surfaces. Ti is the most widely used graft material in dentistry; however, an inflammatory response induced following implant placement results in the generation of reactive oxygen species (ROS). The oxidative stress from the production of ROS such as nitric oxide (NO) and hydrogen peroxide (H2O2) can damage surrounding cells, resulting in implant failure by decreasing cell viability. Thus, the aim of this study was to determine the biological effects of Tβ4 on the oxidative stress induced to MC3T3-E1 preosteoblasts on the Ti surface. Based on an MTT assay and bromodeoxyuridine immunofluorescence staining, Tβ4 was found to increase the proliferation of the H2O2-exposed MC3T3-E1 cells on Ti discs. Reverse transcription-polymerase chain reaction and western blot analyses showed that Tβ4 decreased the mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in H2O2-exposed MC3T3-E1 cells on the Ti discs. Tβ4 inhibited the synthesis of intracellular ROS and the secretion of NO and prostaglandin E2 (PGE2) from H2O2-exposed MC3T3-E1 cells on the Ti discs. In conclusion, Tβ4 inhibits H2O2-induced iNOS and COX-2 expression with a decrease in ROS, NO, and PGE2 synthesis, which leads to improved cell survival with low cytotoxicity under an oxidative stress condition in MC3T3-E1 cells on the Ti surface. This suggests that Tβ4 may be a crucial molecule to reduce oxidative stress-induced cell damage or hypoxia, leading to promoted osseointegration on the Ti surface during implant placement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14865 | DOI Listing |
Redox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:
In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
Periodontitis is a chronic inflammatory disease influenced by macrophage polarization. Additionally, succinylation-enriched Porphyromonas gingivalis is a pathogenic factor of periodontitis. However, the role of succinylation in the pathogenesis of periodontitis remains unclear.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China. Electronic address:
Magnesium (Mg)-based alloys have been recognized as desirable biodegradable materials for orthopedic implants. However, their clinical application has been limited by rapid degradation rates, insufficient antibacterial and osteogenic-promotion properties. Herein, a MgF priming layer was first constructed on AZ31 surface.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Neurosurgery, Ningbo Medical Centre Lihuili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang, 315010, CHINA.
Cranial defect repair remains a significant challenge in neurosurgery, and designing material complexes that can support bone regeneration while minimizing complications such as infection and inflammation could help alleviate this clinical challenge. This study presents a photothermal hydrogel complex with a controlled rapid gelation process, PDA-G-A-H, which integrates photothermal polydopamine nanoparticles (PDA NPs) with gentamycin (G) and alendronate acid (A). Furthermore, the incorporation of the injectable hydrogel Pluronic F127 and collagen (H) made this composite hydrogel (PDA-G-A-H) suitable for the multifaceted needs of cranial defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!