Unsupervised machine learning account of magnetic transitions in the Hubbard model.

Phys Rev E

Department of Physics and Astronomy, San José State University, San José, California 95192, USA.

Published: January 2018

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t-SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t-SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.013306DOI Listing

Publication Analysis

Top Keywords

unsupervised machine
8
machine learning
8
hubbard model
8
monte carlo
8
carlo simulations
8
model
5
learning account
4
account magnetic
4
magnetic transitions
4
transitions hubbard
4

Similar Publications

A significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.

View Article and Find Full Text PDF

EM-AUC: A Novel Algorithm for Evaluating Anomaly Based Network Intrusion Detection Systems.

Sensors (Basel)

December 2024

Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC 20052, USA.

Effective network intrusion detection using anomaly scores from unsupervised machine learning models depends on the performance of the models. Although unsupervised models do not require labels during the training and testing phases, the assessment of their performance metrics during the evaluation phase still requires comparing anomaly scores against labels. In real-world scenarios, the absence of labels in massive network datasets makes it infeasible to calculate performance metrics.

View Article and Find Full Text PDF

Artificial intelligence and assisted reproductive technology: A comprehensive systematic review.

Taiwan J Obstet Gynecol

January 2025

Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:

The objective of this review is to evaluate the contributions of Artificial Intelligence (AI) to Assisted Reproductive Technologies (ART), focusing on its role in enhancing the processes and outcomes of fertility treatments. This study analyzed 48 relevant articles to assess the impact of AI on various aspects of ART, including treatment efficacy, process optimization, and outcome prediction. The effectiveness of different machine learning paradigms-supervised, unsupervised, and reinforcement learning-in improving ART-related procedures was particularly examined.

View Article and Find Full Text PDF

Application of bioinformatic tools in cell type classification for single-cell RNA-seq data.

Comput Biol Chem

January 2025

Bioinformatics Lab, Department of Statistics, Begum Rokeya University, Rangpur 5404, Bangladesh. Electronic address:

The advancements in single-cell RNA sequencing (scRNAseq) technology have significantly transformed genomics research, enabling the handling of thousands of cells in each experiment. As of now, 32,068 research studies have been cataloged in the Pubmed database. The primary aim of scRNAseq investigations is to identify cell types, understand the antitumor immune response, and identify new and uncommon cell types.

View Article and Find Full Text PDF

In credit risk assessment, unsupervised classification techniques can be introduced to reduce human resource expenses and expedite decision-making. Despite the efficacy of unsupervised learning methods in handling unlabeled datasets, their performance remains limited owing to challenges such as imbalanced data, local optima, and parameter adjustment complexities. Thus, this paper introduces a novel hybrid unsupervised classification method, named the two-stage hybrid system with spectral clustering and semi-supervised support vector machine (TSC-SVM), which effectively addresses the unsupervised imbalance problem in credit risk assessment by targeting global optimal solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!