Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δt. The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μ_{sf} for the shear modulus and the shear-stress relaxation modulus G(t). Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μ_{sf}(T) decreases continuously with increasing T for all Δt sampled, its standard deviation δμ_{sf}(T) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δt dependence of μ_{sf} and related quantities can be understood using a weighted integral over G(t).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.012502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!