We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.012148 | DOI Listing |
Quant Imaging Med Surg
January 2025
Department of MRI, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
Background: Accurate differentiation between benign and malignant endometrial lesions holds substantial clinical importance. This study aimed to evaluate the efficacy of various diffusion models in the preoperative diagnosis of early-stage endometrial carcinoma (EC).
Methods: A total of 72 consecutive patients with benign or malignant endometrial lesions from the First People's Hospital of Yunnan Province were prospectively enrolled between April 2021 and July 2023.
Biometrics
January 2025
Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States.
In the era of big data, increasing availability of data makes combining different data sources to obtain more accurate estimations a popular topic. However, the development of data integration is often hindered by the heterogeneity in data forms across studies. In this paper, we focus on a case in survival analysis where we have primary study data with a continuous time-to-event outcome and complete covariate measurements, while the data from an external study contain an outcome observed at regular intervals, and only a subset of covariates is measured.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.
In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.
View Article and Find Full Text PDFStat Methods Med Res
October 2024
Department of Economics, Massachusetts Institute of Technology, Cambridge, MA, USA.
We describe a novel approach for recovering the underlying parameters of the SIR dynamic epidemic model from observed data on case incidence. We formulate a discrete-time approximation of the original continuous-time model and search for the parameter vector that minimizes the standard least squares criterion function. We show that the gradient vector and matrix of second-order derivatives of the criterion function with respect to the parameters adhere to their own systems of difference equations and thus can be exactly calculated iteratively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Fractory, Geosciences UMR 6118, Univ Rennes, CNRS, Rennes 35042, France.
Fracture networks are preferential flow paths playing a critical role in a wide range of environmental and industrial problems. Their complex multiscale structure leads to broad distributions of fluid travel times, affecting many biogeochemical processes. Yet, the relationship between the fracture network structures, their hydrodynamic properties, and the resulting anomalous transport dynamics remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!