Background: Acute asthma exacerbations and pneumonia are important causes of morbidity and mortality in children and may coexist in the same children, although symptom overlap may lead to difficulties in diagnosis. Microbial and viral diversity and differential abundance of either may play an important role in infection susceptibility and the development of acute and chronic respiratory diseases.
Objectives: To describe the virome and bacteriome present in the upper respiratory tract of hospitalized children with a clinical diagnosis of asthma and pneumonia during an acute exacerbation and an acute respiratory illness ARI episode respectively.
Methods: During the winter seasons of 2013-2014 and 2014-2015, 134 nasopharyngeal swabs samples of children <15 years of age with ARI hospitalized at a referral hospital for respiratory diseases were selected based on clinical diagnosis of asthma or pneumonia. The virome and bacteriome were characterized using Whole Genome Sequencing (WGS) and in-house bioinformatics analysis pipeline.
Results: The Asthma group was represented mainly by RV-C, BoV-1 and RSV-B and the pneumonia group by Bacteriophage EJ-1 and TTMV. TTV was found in both groups with a similar amount of reads. About bacterial composition Moraxella catarrhalis, Propionibacterium acnes and Acinetobacter were present in asthma and Veillonella parvula and Mycoplasma pneumoniae in pneumonia. Streptococcus pneumoniae and Haemophilus influenzae were mostly found with both asthma and pneumonia.
Conclusions: Our results show a complex viral and bacterial composition in asthma and pneumonia groups with a strong association of RV-C presence in asthmatic children. We observed Streptococcus pneumoniae and Haemophilus influenzae concurrently in both groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813968 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192878 | PLOS |
Background: Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma.
View Article and Find Full Text PDFGut Microbes
December 2024
USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
Multiple emerging lines of evidence indicate that the microbiome contributes to aging and cognitive health. However, the roles of distinct microbial components, such as viruses (virome) and their interactions with bacteria (bacteriome), as well as their metabolic pathways (metabolome) in relation to aging and cognitive function, remain poorly understood. Here, we present proof-of-concept results from a pilot study using datasets ( = 176) from the Microbiome in Aging Gut and Brain (MiaGB) consortium, demonstrating that the human virome signature significantly differs across the aging continuum (60s vs.
View Article and Find Full Text PDFGut Microbes
December 2024
Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
Previous research has established a link between gut microbiota and osteoporosis (OP) advancement. However, there remains a limited understanding of the crucial contribution of the gut virome in the onset and progression of OP. We employed metagenomic shotgun sequencing and gut virome sequencing to process the ovariectomy (OVX)-induced OP murine model, which revealed significant disparities in bacteriome and virome compositions between subjects with OP and healthy controls.
View Article and Find Full Text PDFGut Microbes
December 2024
Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
Nat Commun
November 2024
Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.
The integrative multi-kingdom interaction of the gut microbiome in ulcerative colitis (UC) and Crohn's disease (CD) remains underinvestigated. Here, we perform shotgun metagenomic sequencing of feces from patients with UC and CD, and healthy controls in the Japanese 4D cohort, profiling bacterial taxa, gene functions, and antibacterial genes, bacteriophages, and fungi. External metagenomic datasets from the US, Spain, the Netherlands, and China were analyzed to validate our multi-biome findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!