Objectives/hypothesis: To find an alternative approach to contemporary techniques in tissue augmentation and reconstruction, tissue engineering strategies aim to involve adipose-derived stem and stromal cells (ASCs) harboring a strong differentiation potential into various tissue types such as bone, cartilage, and fat.

Study Design: Animal research.

Methods: The stromal vascular fraction (SVF) was used directly as a cell source to provide a potential alternative to contemporary ASC-based adipose tissue engineering. Seeded in TissuCol fibrin, we applied ASCs or SVF cells to porous, degradable polyurethane (PU) scaffolds.

Results: We successfully demonstrated the in vivo generation of volume-stable, well-vascularized PU-based constructs containing host-derived mature fat pads. Seeded human stem cells served as modulators of host-cell migration rather than differentiating themselves. We further demonstrated that preliminary culture of SVF cells was not necessary.

Conclusions: Our results bring adipose tissue engineering, together with automated processing devices, closer to clinical applicability. The time-consuming and cost-intensive culture and induction of the ASCs is not necessary.

Level Of Evidence: NA. Laryngoscope, 128:E206-E213, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.27124DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
tissue engineering
12
stromal vascular
8
vascular fraction
8
adipose-derived stem
8
stem stromal
8
stromal cells
8
cells porous
8
svf cells
8
tissue
6

Similar Publications

White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.

View Article and Find Full Text PDF

Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation.

In Vitro Model

December 2024

Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.

Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).

Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.

View Article and Find Full Text PDF

Dapagliflozin treatment decreases visceral and subcutaneous adipose tissue: a systematic review and meta-analysis.

Diabetol Int

January 2025

Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2901 Colonia Volcanes, 72420 Puebla, Puebla México.

Aims: Sodium-glucose co-transporter-2 inhibitors (SGLT2i) have been shown to reduce visceral (VAT) and subcutaneous (SAT) adipose tissue. Although many systematic reviews have examined SGLT2i's effect on VAT and SAT, a focus analysis of dapagliflozin, one of the more commonly prescribe SGLT2i, has yet to been done. This study aims to determine the effect of dapagliflozin on reducing VAT and SAT in patients with chronic disease.

View Article and Find Full Text PDF

Lipases such as patatin-like phospholipase domain-containing protein 3 (PNPLA3) exist in multiple tissue types. In subcutaneous adipose tissue, PNPLA3 was not altered during the periparturient period. Conversely, strong associations between liver PNPLA3 and liver triglyceride content peripartum were identified and confirmed to be causative using knockdown approaches in a primary bovine hepatocyte model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!