Infinite dilution activity coefficient from SMD calculations: accuracy and performance for predicting liquid-liquid equilibria.

J Mol Model

Departamento de Ciências Naturais, Universidade Federal de São João del Rei, São João del-Rei, MG, 36301-160, Brazil.

Published: February 2018

Prediction of liquid-liquid phase equilibria is an important goal in the physical chemistry of solutions. Quantum chemistry methods, combined with a dielectric continuum description of the solvent, has received attention as a first principle approach. In this work, the performance of the continuum solvation model based on density (SMD) for prediction of γ in binary liquid mixtures, using 46 values of γ, was evaluated. We found the mean uncertainty of RTln γ to be 0.92 kcal mol. Based on the calculated γ and the two parameters of the Redlich-Kister expansion, we calculated the liquid-liquid phase equilibria. Based on 26 values of solubility, an uncertainty of 0.66 was found in the logarithm of molar fraction of the smallest component in each phase. Our results suggest this approach can be used for fast and semi-quantitative prediction of phase behavior. More reliable predictions could be obtained with improvements in the SMD model. Graphical abstract Prediction of liquid-liquid phase equilibriaᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3597-8DOI Listing

Publication Analysis

Top Keywords

liquid-liquid phase
12
prediction liquid-liquid
8
phase equilibria
8
phase
5
infinite dilution
4
dilution activity
4
activity coefficient
4
coefficient smd
4
smd calculations
4
calculations accuracy
4

Similar Publications

Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

Appendix.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Since the first Chapter dealt with the well-known charge-charge interactions familiar to biologists, this concluding Chapter introduces some key electrical forces, probably much less familiar, perhaps even unknown. LLPS (liquid liquid phase separation) which we have seen involved in so much of cell biology depends on multivalent, π-π and cation-π electrical forces. How these arise is dealt with here and may be especially useful as an aide memoir to return to when such issues arise within the bulk of the text.

View Article and Find Full Text PDF

Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.

View Article and Find Full Text PDF

Neurological Diseases can be Regulated by Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.

View Article and Find Full Text PDF

Development and validation of a UHPLC-MS/MS method for the quantitative analysis of trans-ISRIB in human plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA. Electronic address:

The integrated stress response (ISR) is a cellular defense mechanism activated under stress conditions. When the ISR is activated, it slows the production of proteins, the building blocks that cells need to function. Trans-integrated stress response inhibitor (trans-ISRIB) is a compound that can reverse the effects of ISR activation, showing promise for treating neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!