Mammalian attachment behaviors, such as crying, are essential for infant survival by receiving food, protection, and warmth from caregivers. Ultrasonic vocalization (USV) of infant rodents functions to promote maternal proximity. Impaired USV emission has been reported in mouse models of autism spectrum disorder, suggesting that USV is associated with higher brain function. In utero and lactational dioxin exposure is known to induce higher brain function abnormalities in adulthood; however, whether perinatal dioxin exposure affects behavior during infancy is unclear. Therefore, we studied the impact of dioxin exposure on USV emission in infant mice born to dams treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 0.6 or 3.0 µg/kg) on gestational day 12.5. On postnatal days 3-9, USVs of the offspring were recorded for 1 min using a microphone in a sound-attenuated chamber. The total USV and mean call durations in infant mice exposed to 3.0 µg/kg, but not 0.6 µg/kg, were shorter than those in the control mice. In addition, the percentages of complicated call types (i.e., chevron and wave) in mice exposed to 3.0 µg/kg were decreased. Dioxin-induced gene expression changes occurred in the brains of mice exposed to 3.0 µg/kg; however, body weight, motor activity, and vocal fold structure were not significantly affected. These results suggest that infant USV is a useful behavioral endpoint in developmental neurotoxicity assessment that may be used to evaluate effects of chemical exposure on the infant-caregiver interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-018-2176-1 | DOI Listing |
BMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA.
The emergence and global spread of carbapenem-resistant complex species present a pressing public health challenge. Carbapenem-resistant spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults.
View Article and Find Full Text PDFVaccine
January 2025
State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China. Electronic address:
Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications.
View Article and Find Full Text PDFMicrobiome
January 2025
Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
Background: The immature lungs of very preterm infants are exposed to supraphysiologic oxygen, contributing to bronchopulmonary dysplasia (BPD), a chronic lung disease that is the most common morbidity of prematurity. While the microbiota significantly influences neonatal health, the relationship between the intestinal microbiome, particularly micro-eukaryotic members such as fungi and yeast, and lung injury severity in newborns remains unknown.
Results: Here, we show that the fungal microbiota modulates hyperoxia-induced lung injury severity in very low birth weight premature infants and preclinical pseudohumanized and altered fungal colonization mouse models.
Antioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!