Vocalization as a novel endpoint of atypical attachment behavior in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed infant mice.

Arch Toxicol

Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Published: May 2018

Mammalian attachment behaviors, such as crying, are essential for infant survival by receiving food, protection, and warmth from caregivers. Ultrasonic vocalization (USV) of infant rodents functions to promote maternal proximity. Impaired USV emission has been reported in mouse models of autism spectrum disorder, suggesting that USV is associated with higher brain function. In utero and lactational dioxin exposure is known to induce higher brain function abnormalities in adulthood; however, whether perinatal dioxin exposure affects behavior during infancy is unclear. Therefore, we studied the impact of dioxin exposure on USV emission in infant mice born to dams treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 0.6 or 3.0 µg/kg) on gestational day 12.5. On postnatal days 3-9, USVs of the offspring were recorded for 1 min using a microphone in a sound-attenuated chamber. The total USV and mean call durations in infant mice exposed to 3.0 µg/kg, but not 0.6 µg/kg, were shorter than those in the control mice. In addition, the percentages of complicated call types (i.e., chevron and wave) in mice exposed to 3.0 µg/kg were decreased. Dioxin-induced gene expression changes occurred in the brains of mice exposed to 3.0 µg/kg; however, body weight, motor activity, and vocal fold structure were not significantly affected. These results suggest that infant USV is a useful behavioral endpoint in developmental neurotoxicity assessment that may be used to evaluate effects of chemical exposure on the infant-caregiver interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-018-2176-1DOI Listing

Publication Analysis

Top Keywords

infant mice
12
dioxin exposure
12
mice exposed
12
exposed 30 µg/kg
12
usv emission
8
higher brain
8
brain function
8
infant
6
mice
6
usv
6

Similar Publications

Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.

View Article and Find Full Text PDF

The emergence and global spread of carbapenem-resistant complex species present a pressing public health challenge. Carbapenem-resistant spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults.

View Article and Find Full Text PDF

Development of a genetically modified full-length human respiratory syncytial virus preF protein vaccine.

Vaccine

January 2025

State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China. Electronic address:

Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications.

View Article and Find Full Text PDF

The fungal microbiota modulate neonatal oxygen-induced lung injury.

Microbiome

January 2025

Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.

Background: The immature lungs of very preterm infants are exposed to supraphysiologic oxygen, contributing to bronchopulmonary dysplasia (BPD), a chronic lung disease that is the most common morbidity of prematurity. While the microbiota significantly influences neonatal health, the relationship between the intestinal microbiome, particularly micro-eukaryotic members such as fungi and yeast, and lung injury severity in newborns remains unknown.

Results: Here, we show that the fungal microbiota modulates hyperoxia-induced lung injury severity in very low birth weight premature infants and preclinical pseudohumanized and altered fungal colonization mouse models.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!