In our daily lives, we are constantly exposed to numbers and letters. However, it is still under debate how letters and numbers are processed in the brain, while information on this topic would allow for a more comprehensive understanding of, for example, known influences of language on numerical cognition or neural circuits shared by numerical cognition and language processing. Some findings provide evidence for a double dissociation between numbers and letters, with numbers being represented in the right and letters in the left hemisphere, while the opposing view suggests a shared neural network. Since processing may depend on the task, we address the reported inconsistencies in a very basic symbol copying task using functional near-infrared spectroscopy (fNIRS). fNIRS data revealed that both number and letter copying rely on the bilateral middle and left inferior frontal gyri. Only numbers elicited additional activation in the bilateral parietal cortex and in the left superior temporal gyrus. However, no cortical activation difference was observed between copying numbers and letters, and there was Bayesian evidence for common activation in the middle frontal gyri and superior parietal lobules. Therefore, we conclude that basic number and letter processing are based on a largely shared cortical network, at least in a simple task such as copying symbols. This suggests that copying can be used as a control condition for more complex tasks in neuroimaging studies without subtracting stimuli-specific activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-018-5204-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!