Biomimetic Rotated Lamellar Plywood Motifs by Additive Manufacturing of Metal Alloy Scaffolds for Bone Tissue Engineering.

ACS Biomater Sci Eng

Department of Bioengineering, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.

Published: February 2017

AI Article Synopsis

  • Additive manufacturing enables the creation of biomimetic tissue scaffolds to effectively address bone defects.
  • Past studies have focused on adjusting scaffold materials and designs to enhance mechanical properties.
  • This research demonstrates that a rotated plywood structure improves mechanical performance compared to traditional orthogonal designs, showing greater strength and less structural failure under stress.

Article Abstract

Additive manufacturing presents opportunities to treat bone defects using biomimetic tissue scaffolds. Past investigations have explored modulating scaffold mechanical properties through varying materials and geometric motifs. Herein, we applied the rotated plywood structure of bone tissue to a 3D printed scaffold with the goal of improving mechanical performance compared to an orthogonal mesh design commonly used in tissue scaffold applications. The scaffolds were subjected to uniaxial compression followed by scanning electron microscopy and microcomputer tomography. The uniaxial compression test was characterized through elastic modulus (mean 1.32 GPa biomimetic, 0.196 GPa orthogonal, < 0.001), ultimate compressive strength (mean 16.546 MPa biomimetic, 6.309 MPa orthogonal design, < 0.001), and ultimate compressive strain values (4.867% biomimetic, 9.000% orthogonal, < 0.005). Correlation of microfracture imaging to bulk scaffold mode of failure suggest that utilizing the biomimetic plywood design not only improved mechanical performance, but also reduced asymmetrtic buckling, plastic deformation, and fracture propagation similar to bone tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809006PMC
http://dx.doi.org/10.1021/acsbiomaterials.7b00043DOI Listing

Publication Analysis

Top Keywords

bone tissue
12
additive manufacturing
8
mechanical performance
8
uniaxial compression
8
0001 ultimate
8
ultimate compressive
8
biomimetic
6
tissue
5
biomimetic rotated
4
rotated lamellar
4

Similar Publications

Transoral resection of a symptomatic odontoid process aneurysmal bone cyst: illustrative case.

J Neurosurg Case Lessons

January 2025

Departments of Neurosurgery, NYU Langone Health, New York, New York.

Background: Aneurysmal bone cysts (ABCs) are slow-growing, expansile bone tumors most often observed in the long bones and lumbar and thoracic spine. Anterior column ABCs of the spine are rare, and few cases have described their surgical management, particularly for lesions with extension into the odontoid process and the bilateral C2 pedicles. In the present case, the authors describe a two-stage strategy for resection of a symptomatic 2.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Background And Purpose:  Vascularized fibular grafting following tumor resection is an essential treatment option in limb salvage surgery. We aimed to evaluate: (I) bone healing, (II) complications and reoperations, (III) limb salvage, and (IV) survival.

Methods:  We present a retrospective evaluation of a national cohort comprising 27 patients.

View Article and Find Full Text PDF

Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.

View Article and Find Full Text PDF

Background And Purpose:  Early migration of the uncemented cruciate-sacrificing rotating platform ATTUNE and Low Contact Stress (LCS) tibial components was classified as at-risk for aseptic loosening rates exceeding 6.5% at 15 years based on recent fixation-specific migration thresholds. In this secondary report of a randomized controlled trial (RCT) we aimed to evaluate whether the 5-year migration, inducible displacement, and the clinical outcome of the ATTUNE components were comparable to those of the LCS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!