Inhibition of the Vapor-Mediated Phase Transition of the High Temperature Form of Pyrazinamide.

Cryst Growth Des

Normandie Université, Laboratoire SMS-EA3233, Université de Rouen, F-76821, Mont-Saint-Aignan, France.

Published: February 2018

AI Article Synopsis

Article Abstract

Tailor-made additives can prove an effective method to prolong the lifetime of metastable forms of pharmaceutical compounds by surface stabilization. Pyrazinamide (PZA) is a pharmaceutical compound with four polymorphic forms. The high temperature γ form, which can be produced by spray drying or sublimation growth, is metastable at room temperature and transforms within days when produced by spray drying, and within several months up to years for single crystals produced by sublimation. However, when PZA is cospray dried with 1,3-dimethylurea (DMU), it has been reported to remain in its γ form for several years. Scanning electron microscopy (SEM) images reveal that the phase transition from γ-PZA to the low temperature forms involves a vapor-mediated recrystallization, while the reverse phase transition upon heating is a nucleation-and-growth solid-solid phase transition. The lifetime-extending effect of DMU on spray-dried PZA has been investigated in more detail and compared with high-energy ball milling of sublimation-grown γ-PZA crystals. Co-ball milling of PZA and DMU is found to extend the lifetime of the high temperature form of PZA to a few months, while separate ball milling leads to an extension of merely a few weeks. DMU acts as an additive that most likely stabilizes the surface of γ-PZA, which would reduce the vapor pressure of PZA, thereby reducing the transition rate. Alternatively, DMU could prevent nucleation of low temperature forms of PZA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806087PMC
http://dx.doi.org/10.1021/acs.cgd.7b01550DOI Listing

Publication Analysis

Top Keywords

phase transition
16
high temperature
12
temperature form
12
produced spray
8
spray drying
8
low temperature
8
temperature forms
8
ball milling
8
pza
7
temperature
6

Similar Publications

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

Background: Transitioning into the first year of clinical practice as a nurse or changing specialties in the nursing career presents a critical phase for novice nurses characterized by excitement, apprehension, and the phenomenon of "transition shock." Within perioperative nursing, this transition phase takes on distinctive challenges. However, there is a lack of empirical evidence on transition programs and arrangements.

View Article and Find Full Text PDF

Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets.

Mater Horiz

January 2025

College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China.

To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [()], and adequate coercivity (). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr). Erbium-based compounds (ErCo) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in and ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!