Microglia activation is a commonly pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a devastating disorder characterized by a selective motor neurons degeneration. Whether such activation might represent a causal event rather than a secondary epiphenomenon remains elusive. Here, we show that CNS-delivery of IL-4-via a lentiviral-mediated gene therapy strategy-skews microglia to proliferate, inducing these cells to adopt the phenotype of slowly proliferating cells. Transcriptome analysis revealed that IL-4-treated microglia express a broad number of genes normally encoded by embryonic microglia. Since embryonic microglia sustain CNS development, we then hypothesized that turning adult microglia to acquire such phenotype via IL-4 might be an efficient in vivo strategy to sustain motor neuron survival in ALS. IL-4 gene therapy in SOD1 mice resulted in a general amelioration of clinical outcomes during the early slowly progressive phase of the disease. However, such approach did not revert neurodegenerative processes occurring in the late and fast progressing phase of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833860 | PMC |
http://dx.doi.org/10.1038/s41419-018-0288-4 | DOI Listing |
Background: Type 2 diabetes (T2D) and older age are well-known risk factors for dementia. Indeed, there is evidence that older adults not diagnosed, but at-risk for T2D can show early signs of cognitive decline, further exacerbated by excessive body weight or high blood glucose levels. Such a finding would have implications for early treatment strategies; however, the evidence is still sparse.
View Article and Find Full Text PDFAm J Trop Med Hyg
December 2024
Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Mymensingh Med J
January 2025
Dr Md Sonaullah, Assistant Professor, Department of Orthopedics and Traumatology, Mymensingh Medical College (MMC), Mymensingh, Bangladesh; E-mail:
Subtrochanteric femoral fractures are one of the common fractures encountered in today's Orthopaedic practice. This area consists of mostly cortical bone with high stress generation thus heal slowly which leads implant failure. The inherent instability of this fracture and forces of the muscles with comminuted medial calcar is giving the fracture a tendency to varus collapse.
View Article and Find Full Text PDFClin Pharmacokinet
December 2024
Department of Anesthesiology, University of Groningen, University Medical Center Groningen, P. O. Box 30001, 9700 RB, Groningen, The Netherlands.
Background And Objectives: The pharmacokinetics (PK) of piperacillin/tazobactam (PIP/TAZ) is highly variable across different patient populations and there are controversies regarding non-linear elimination as well as the fraction unbound of PIP (f). This has led to a plethora of subgroup-specific models, increasing the risk of misusing published models when optimising dosing regimens. In this study, we aimed to develop a single model to simultaneously describe the PK of PIP/TAZ in diverse patient populations and evaluate the current dosing recommendations by predicting the PK/pharmacodynamics (PD) target attainment throughout life.
View Article and Find Full Text PDFHeliyon
December 2024
Baoji Northwest Nonferrous Metal Erlihe Mining Co., Ltd., Baoji, 721700, China.
The restoration and treatment of underground voids have always posed significant challenges for constructing environmentally sustainable mines. To investigate the effectiveness of a combined approach involving waste rock filling and grouting roof filling as treatment methods to ensure safety and stability in mining voids, this study employed a comprehensive dynamic analysis approach. It specifically focused on an individual underground metal mine cavity by integrating numerical simulation analysis techniques with onsite displacement monitoring methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!