Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism under well-controlled conditions. With a reaction-diffusion-type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequently, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832723 | PMC |
http://dx.doi.org/10.1098/rsif.2017.0713 | DOI Listing |
Arch Public Health
January 2025
Laboratory Health Systemic Process (P2S), Research Unit, UR4129, University Claude Bernard Lyon 1, University of Lyon, 11 rue Guillaume Paradin, Lyon, 69008, France.
Background: According to WHO, "noncommunicable diseases (NCDs) kill 41 million people" annually, as the primary cause of death globally. WHO's Global Action Plan for the prevention and control of NCDs 2013-2020 (extended) tackles this issue and its implications regarding inequalities between countries and populations. Based on combined behavioural, environmental and policy approaches, health promotion aims to reduce health inequities and address health determinants through 3 strategies: education, prevention and protection.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Introduction: The COVID-19 pandemic forced leaders and employees in health care services to take difficult decisions to manage risks associated with employee health and the organizations' functioning. This study aims to identify the changes in employee working routines, job demands, and job resources within Swedish maternal healthcare during the COVID-19 pandemic, and how these changes affected workload and health.
Methods: Data were derived from the longitudinal COPE Staff study involving midwives and physicians within maternal healthcare.
BMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Anatomy, Clinical Sciences Building, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308323, Singapore.
Study Objective: Student-centered learning and unconventional teaching modalities are gaining popularity in medical education. One notable approach involves engaging students in producing creative projects to complement the learning of preclinical topics. A systematic review was conducted to characterize the impact of creative project-based learning on metacognition and knowledge gains in medical students.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!