Dissolved organic matter (DOM) includes an array of carbon-based compounds that vary in size and structure and have complex interactions with mercury (Hg) cycling in aquatic systems. While many studies have examined the relationship between dissolved organic carbon concentrations ([DOC]) and methyl Hg bioaccumulation, few studies have considered the effects of DOM composition (e.g., protein-content, aromaticity). The goal of this study was to explore the relationships between total and methyl [Hg] in water, invertebrates, and fish and optically derived measures of DOM composition from 47 lake and river sites across a boreal watershed. Results showed higher aqueous total [Hg] in systems with more aromatic DOM and higher [DOC], potentially due to enhanced transport from upstream or riparian areas. Methyl [Hg] in biota were all positively related to the amount of microbial-based DOM and, in some cases, to the proportions of labile and protein-like DOM. These results suggest that increased Hg bioaccumulation is related to the availability of labile DOM, potentially due to enhanced Hg methylation. DOM composition explained 68% and 54% more variability in [Hg] in surface waters and large-bodied fish, respectively, than [DOC] alone. These results show that optical measures of DOM characteristics are a valuable tool for understanding DOM-Hg biogeochemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b05348 | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada. Electronic address:
Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China.
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.
View Article and Find Full Text PDFWater Res
January 2025
Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; School of Public Health, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, China. Electronic address:
Rivers play an important role as reservoirs and sinks for antibiotic resistance genes (ARGs). However, it remains underexplored for the resistome and associated mobilome in river ecosystems, and hosts of riverine ARGs particularly the pathogenic ones are rarely studied. This study for the first time conducted a longitudinal metagenomic analysis to unveil the resistome, mobilome, and microbiome in river water, by collecting samples from 16 rivers in Hong Kong over a three-year period and using both short-read and long-read sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!