-Substituted pyridinium salts constitute one of the most valuable reagent classes in organic synthesis, due to their versatility and ease of use. Herein we report a preliminary synthesis and detailed structural analysis of several -(1-ethoxyvinyl)pyridinium triflates, an unusual class of pyridinium salts with potentially broad use as a reagent in organic synthesis. Treatment of pyridines with trifluoromethane sulfonic acid and ethoxyacetylene generates stable, isolable adducts which have been extensively characterized, due to their novelty. Three-dimensional structural stability is perpetuated by an array of C-H•••O hydrogen bonds involving oxygen atoms from the -SO₃ groups of the triflate anion, and hydrogen atoms from the aromatic ring and vinyl group of the pyridinium cation. Predictions from density functional theory calculations of the energy landscape for rotation about the exocyclic C-N bond of 2-chloro-1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate () and 1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate () are also reported. Notably, the predicted global energy minimum of was nearly identical to that found within the crystal structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017145 | PMC |
http://dx.doi.org/10.3390/molecules23020413 | DOI Listing |
Inorg Chem
December 2024
College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
As an emerging class of hybrid materials, donor-acceptor (D-A) hybrid crystals with photoactive organic and inorganic components have gradually become an ideal platform for photochromic materials. Wherein the most available organic components are electron-poor naphthalenediimide, pyridinium, and triazine derivatives, inorganic units are electron-rich polyoxometalates and metal halides. Herein, we introduced pyridinium moieties into the naphthalenediimide core by conjugated bonds so as to increase the electron deficiency of organic species for enhanced photochromic properties.
View Article and Find Full Text PDFChemistry
December 2024
University of Liverpool, Department of Chemistry, Oxford Street, L69 7ZD, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The Zincke reaction and Birch reduction have been one of the few reactions that allow for ring opening of pyridines ever since the discovery of pyridine more than a century ago. This paper presents a new addition to the list of pyridine ring-opening reactions, reductive Zincke reaction, which affords saturated δ-amino ketones. Under the catalysis of a simple rhodium complex, pyridinium salts with diverse substituents are reduced with formic acid, ring-opened with water, transaminated with a secondary amine and further reduced to afford a wide range of δ-amino ketones, including those in which the alkane chain of the ketones is selectively deuterated or fluorinated.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA.
Reaction of 2-amino-5-iodo-pyridine (5IAP) with concentrated HBr at room temperature yielded 2-amino-5-iodo-pyridinium bromide, CHIN ·Br or (5IAPH)Br. The complex formed pale-yellow crystals, which exhibit significant hydrogen bonding between the amino and pyridinium N-H donors and bromide ion acceptors. Halogen bonding is also observed.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Research Institute of Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia.
Herein, we describe a novel coupling between ambiphilic 2-pyridylselenyl reagents and nitriles featuring an active α-methylene group. Depending on the solvent employed, this reaction can yield two distinct types of cationic pyridinium-fused selenium-containing heterocycles, 1,3-selenazolium or 1,2,4-selenadiazolium salts, in high yields. This is in contrast to what we observed before for other nitriles.
View Article and Find Full Text PDFAsian J Pharm Sci
December 2024
Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
Photodynamic therapy (PDT) brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing; however, the low bioavailability of traditional photosensitizers (PSs) and their dependence on oxygen severely limits their application. Aggregation-induced emission (AIE) PSs can dramatically facilitate the photosensitization effect, which can have positive impacts on tumor PDT. To-date, most AIE PSs lack tumor targeting capability and possess poor cell delivery, resulting in their use in large quantities that are harmful to healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!