While oxidative stress is a commonly cited toxicological mechanism, conventional methods to study it suffer from a number of shortcomings, including destruction of the sample, introduction of potential artifacts, and a lack of specificity for the reactive species involved. Thus, there is a current need in the field of toxicology for non-destructive, sensitive, and specific methods that can be used to observe and quantify intracellular redox perturbations, more commonly referred to as oxidative stress. Here, we present a method for the use of two genetically-encoded fluorogenic sensors, roGFP2 and HyPer, to be used in live-cell imaging studies to observe xenobiotic-induced oxidative responses. roGFP2 equilibrates with the glutathione redox potential (EGSH), while HyPer directly detects hydrogen peroxide (H2O2). Both sensors can be expressed into various cell types via transfection or transduction, and can be targeted to specific cellular compartments. Most importantly, live-cell microscopy using these sensors offers high spatial and temporal resolution that is not possible using conventional methods. Changes in the fluorescence intensity monitored at 510 nm serves as the readout for both genetically-encoded fluorogenic sensors when sequentially excited by 404 nm and 488 nm light. This property makes both sensors ratiometric, eliminating common microscopy artifacts and correcting for differences in sensor expression between cells. This methodology can be applied across a variety of fluorometric platforms capable of exciting and collecting emissions at the prescribed wavelengths, making it suitable for use with confocal imaging systems, conventional wide-field microscopy, and plate readers. Both genetically-encoded fluorogenic sensors have been used in a variety of cell types and toxicological studies to monitor cellular EGSH and H2O2 generation in real-time. Outlined here is a standardized method that is widely adaptable across cell types and fluorometric platforms for the application of roGFP2 and HyPer in live-cell toxicological assessments of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912390 | PMC |
http://dx.doi.org/10.3791/56945 | DOI Listing |
Redox Rep
December 2025
Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People's Republic of China.
Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Oncology, Anhui Medical University Hefei 230000, Anhui, China.
Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, People's Republic of China.
Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Neurology, Hubei Provincial Hospital of Integrated Traditional and Western Medicine, Jianghan District, No. 11 Lingjiaohu Road, Wuhan, 430015 China.
Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!