The transport of ions through cell membranes ensures the fine control of ion content within and outside the cell that is indispensable for cell survival. These transport mechanisms are mediated by the activities of specialized transporter proteins. Specifically,pH dynamics are finely controlled by plasma membrane proton (H) extrusion systems, such as the Na/H exchanger (NHE) protein family. Despite extensive efforts to study the mechanisms underlying NHE regulation, our current understanding of the biophysical and molecular properties of the NHE family is inadequate because of the limited availability of methods to effectively measure NHE activity. In this manuscript, we used H-selective electrodes during whole-cell patch clamping recording to measure NHE-induced H flux. We proposed this approach to overcome some limitations of typically used methods to measure NHE activity, such as radioactive uptake and fluorescent membrane permeants. Measurement of NHE activity using the described method enables high sensitivity and time resolution and more efficient control of intracellular H concentrations. H-selective electrodes are based on the fact that transporter activity creates an ion gradient in close proximity to the cell membrane. An H-selective electrode moving up to and away from the cell membrane in a repetitive, oscillatory fashion records a voltage difference that is dependent on H flux. While H-selective electrodes are used to detect H flux moving out of the cell, the patch clamp method in the whole-cell configuration is used to control the intracellular ion composition. Moreover, application of the giant patch clamp technique allows modification of the intracellular composition of not only ions but also lipids. The transporter activity of NHE isoform 3 (NHE3) was measured using this technical approach to study the molecular basis of NHE3 regulation by phosphoinositides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912351 | PMC |
http://dx.doi.org/10.3791/56630 | DOI Listing |
Clin Physiol Funct Imaging
January 2025
Faculty of Medicine, Department Radiology, Gazi University, Ankara, Turkey.
Background: Optimizing hamstring exercises is crucial for injury prevention and performance. This study explored the effects of blood flow restriction (BFR) during Nordic hamstring exercises (NHE) on hamstring muscle activation and vascular function.
Methods: A randomized, single-blind study included 14 healthy, physically active males (mean age: 27.
Nanomaterials (Basel)
December 2024
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.
View Article and Find Full Text PDFA cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change.
View Article and Find Full Text PDFBackground: This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice.
Methods: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment.
Mol Biol Cell
January 2025
Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617.
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na/H exchangers (NHE) that regulate cytoplasmic and organellar pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!