An easy way of controlling pore sizes during the preparation of cellulose nanopapers using nanofibrillated cellulose and different solvents, such as water, ethanol and acetone, was applied in this study. A possible mathematical model is also presented, that describes the occuring processes, which model is based on simple probability theory computations taking the number of possible hydrogen bonds into consideration. This model allows the better understanding of the solvent dependence of pore formation on a molecular level. For the comparison of the effects of solvents two different series of cellulose nanopapers were prepared. In the cases of both series, an aqueous nanofibrillated cellulose suspension was used for the fabrication of nanopapers, and different solvents were used for their modification. Based on scanning electron microscopy images and mercury intrusion porosimetry data it has been concluded, that using different solvents was a crucial point in controlling pore sizes. A theory about the swelling effects, as well as the formation and decomposition of nanofibrillated cellulose aggregates based on the hydrogen bonding abilities of the solvents, was proposed and proven in this paper. As-prepared nanocellulose papers can be excellent candidates for further applications as support materials (e.g., virus filtration).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14536 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, Madrid, 28040, Spain.
In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenolic content (from 552 to 324 mg GAE/g lignin).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland.
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose nanopapers (CNPs) had a homogeneous and compact structure but were very brittle, stiff, and wavy.
View Article and Find Full Text PDFAAPS PharmSciTech
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
This research aimed to develop a mupirocin-doped α-cellulose nanopaper (MDAC-NP) as a wound dressing to accelerate wound healing while limiting localized bacterial growth. The α-cellulose nanofibrils suspension was prepared by ultrasonication followed by microfluidization and subsequently doped with 0.05% w/v mupirocin to prepare nanopaper (MDAC-NP-A).
View Article and Find Full Text PDFACS Sens
December 2024
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
ChemSusChem
December 2024
Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
Extracting high-performance nanomaterials from waste presents a promising avenue for valorization. This study presents two methods for extracting cellulose nanofibrils (CNFs) from discarded textiles. Post-consumer cotton fabrics are chemically treated through either cationization with (2,3-epoxypropyl)trimethylammonium chloride or TEMPO/NaBr-catalyzed oxidation, followed by fibrillation to produce Cat-CNFs and TO-CNFs, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!