Herein, we reports the application of various spinel ferrite nanoparticles, MFe2O4 (M = Co, Ni, Cu, Zn), as efficient catalyst for Biginelli reaction. All ferrite nanoparticles were synthesized using a novel aqueous solution based method. It was observed that, the catalytic activity of the ferrite nanoparticles followed the decreasing order of CoFe2O4 > CuFe2O4 > NiFe2O4 > ZnFe2O4. The most important feature of these ferrite nanocatalysts is that, these nanoparticles can directly be used as catalyst and no surface modification or functionalization is required. These ferrite nanoparticles are easily separable from reaction mixture after reaction by using a magnet externally. Easy synthesis methodology, high catalytic activity, easy magnetic separation and good reusability make these ferrite nanoparticles attractive catalysts for Biginelli reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14345 | DOI Listing |
Aquat Toxicol
December 2024
Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey. Electronic address:
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFeOMNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFeOMNPs (1, 10, 100 mg/L) both individually and with TMX.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan.
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India. Electronic address:
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico.
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFeO nanoparticles (NPs), adding to this work's novelty.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico.
A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFeO nanoparticles (NiZnFeO NPs) to obtain improved mechanical and barrier properties, facilitating their future application as sustainable, corrosion-resistant coatings for medical instruments. The synthesized NiZnFeO NPs had a crystallite size of ~29 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!