Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Li1.20[Mn0.54Ni0.13Co0.13]0.80-xYbxO2 (x = 0, 0.01, 0.02, 0.03) cathode materials have been synthesized by using sol-gel method and characterized by means of XRD, SEM, ICP-OES analysis. The galvanostatic charge-discharge tests results showed the improved electrochemical properties were obtained through the Yb3+ doping modification. With the increase of Yb3+ doping content, the capacity retentions enhanced from 85.6% to 88.9% and then decrease to 86.5% after 100 cycles with x = 0.01, 0.02 and 0.03, respectively, while the un-doped sample delivered the capacity retention of 83.0%. Besides, the discharge capacity of Li1.20 [Mn0.54Ni0.13Co0.13]0.78Yb0.02O2 was about 23.1 mAh g-1 larger than that of un-doped sample at 5C high rate. The electrochemical impedance spectroscopy (EIS) and cyclic voltammetric results indicated that the Yb3+ doping modification could suppress the layered-spinel phase transformation during cycling and maintain a lower value of charge transfer impedance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!