In the present research an attempt was made to develop and optimize rapamycin (Rapa) loaded hollow magnetic Fe3O4/graphene oxide (Fe3O4/GO) nanocomposites using solvent evaporation technique and response surface methodology (RSM). A Box-Behnken design (BBD) with a three-level, three-factor was used to determine preparation parameters that would achieve the highest encapsulation efficiency (EE) and drug loading capacity (DLC). At optimum conditions such as mass ratio of Rapa to Fe3O4/GO (Rapa: Fe3O4/GO) 0.45, oscillation rate 144.0, and volume ratio of water to solvent (W/S) 4.2, the EE and DLC of experimentally prepared particles reached 84.92 ± 5.50% and 28.68 ± 2.54% respectively. The morphological assessment results showed that hollow Fe3O4 nano-aggregates were evenly and tightly dispersed on the layer of GO membrane. After the addition of GO and encapsulation of Rapa, the Fe3O4/GO nanocomposites and Rapa loaded magnetic Fe3O4/GO (Fe3O4/GO-Rapa) nanocomposites showed saturation magnetization of 57.77 and 40.71 emu/g respectively. The drug releasing experiment indicated a slightly acidic atmosphere, which was suitable for Rapa releasing from the obtained Fe3O4/GO nanocomposites. The cell counting Kit-8 (CCK-8) assays demonstrated the hollow Fe3O4/GO nanocomposites could effectively improve the efficacy of Rapa in killing HepG2 cells, which displayed a concentration-dependent manner. All these results suggested the prepared Fe3O4/GO nanocomposites have a potential application in drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2018.14674 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Shaanxi 710126, People's Republic of China.
Biodegradation
July 2024
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
The process of mechanically stirred membrane reactor containing the suspension of horseradish peroxidase (HRP) immobilized on synthesized nanocomposite (Tau-SiO@FeO-GO) was designed for continuous degradation of tetracycline. The immobilized HRP was characterized in terms of kinetic parameters and catalytic activities as these parameters were improved highly through immobilization. The stability indices including pH and temperature were investigated in parallel.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
Lang fang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China.
In this work, graphene oxide@Fe3O4 (GO@Fe3O4) two-dimensional magnetically oriented nanocomposites were prepared through the co-precipitation approach using graphene oxide as the carrier and FeCl3·6H2O and FeSO4·7H2O as iron sources. The samples were characterized and tested by X-ray diffraction, a transmission electron microscope, Fourier-transform infrared spectroscopy, a vibrating-specimen magnetometer, a polarized optical microscope, an optical microscope, etc. The effects of material ratios and reaction conditions on the coating effects of Fe3O4 on the GO surface were investigated.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2020
Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran.
In the present study, a facile modified impregnation method was employed to synthesize superparamagnetic graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposites. Based on the GO-Fe3O4 as adsorbent, a simple and fast magnetic-dispersive solid phase extraction followed by high performance liquid chromatography with fluorescence detection (M-dSPE-HPLC-FL) method was established and validated for the preconcentration and determination of terazosin hydrochloride (TRZ) in human plasma samples. The obtained nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2018
School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!