A Facile Way to Increase the Cellular Uptake Efficiency of Hybrid Nanoparticles.

J Nanosci Nanotechnol

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.

Published: July 2018

Lipid-polymer hybrid nanoparticles composed of polymer cores and lipid shells have been intensively studied as cancer drug delivery systems. The aim of the present study was to investigate the effect of phosphatidylcholine (PC) on physicochemical properties, stability and cellular uptake of lipid-poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticles. Coumarin-6 (cou-6) loaded hybrid nanoparticles (NPs) were prepared using PC with different alkyl chain lengths from C12 to C18, and were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and encapsulation efficiency (EE). The quality and quantity of cellular uptake of NPs were carefully assessed. The NPs were 140-180 nm in size, negatively charged of 7-12 mV and with EE values higher than 80%. NPs remained stable in storage at 4 °C for 28 d. Cell viability rates of NPs were above 90%, and the as-prepared nanoparticles showed excellent biocompatibility by MTT assay. Interestingly, the uptake order was as follows: C12 < C14 < C16-C18. As the alkyl chain length of PC increased, the cellular uptake efficiency of hybrid nanoparticles was enhanced. C16 to C18 saturated PC exhibited the highest cellular uptake efficiency and did not significantly differ. PC had little or no effect on physicochemical properties and stability but did affect cellular uptake of hybrid nanoparticles. The obtained findings could provide a fundamental basis for rational design of hybrid nanoparticles and a facile way to improve the cellular uptake of hybrid nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2018.15359DOI Listing

Publication Analysis

Top Keywords

hybrid nanoparticles
32
cellular uptake
28
uptake efficiency
12
nanoparticles
9
uptake
8
hybrid
8
efficiency hybrid
8
physicochemical properties
8
properties stability
8
alkyl chain
8

Similar Publications

Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague.

View Article and Find Full Text PDF

This study investigates the biosynthesis of CdS nanoparticles (NPs) by Escherichia coli CD-2 to develop an E. coli-CdS hybrid system. The hybrid system was exposed to light in the presence and absence of cysteine (Cys) as a sacrificial agent.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.

View Article and Find Full Text PDF

Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases.

J Control Release

December 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!