Background: As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants.
Study Design: A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading.
Results: The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found.
Conclusion: Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/ijdr.IJDR_729_16 | DOI Listing |
Polymers (Basel)
December 2024
Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iasi, Romania.
The paper starts by describing the manufacturing process of cups thermoformed from extruded foils of 80% recycled PET (80r-PET), which comprises heating, hot deep drawing and cooling. The 80r-PET foils were heated up to 120 °C, at heating rates of the order of hundreds °C/min, and deep drawn with multiple punchers, having a depth-to-width ratio exceeding 1:1. After puncher-assisted deformation, the cups were air blown away from the punchers, thus being "frozen" in the deformed state.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Nano Science and Nano Engineering Department, Ataturk University, Erzurum 25240, Turkey.
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
GaN-on-Si high-electron-mobility transistors have emerged as the next generation of high-powered and cost-effective microwave devices; however, the limited thermal conductivity of the Si substrate prevents the realization of their potential. In this paper, a GaN-on-insulator (GNOI) structure is proposed to enhance the heat dissipation ability of a GaN-on-Si HEMT. Electrothermal simulation was carried out to analyze the thermal performance of the GNOI-on-Si HEMTs with different insulator dielectrics, including SiO, SiC, AlN, and diamond.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
The development of new convenient tools for the design of multicomponent nucleic acid (NA) complexes is one of the challenges in biomedicine and NA nanotechnology. In this paper, we analyzed the formation of hybrid RNA/DNA concatemers and self-limited complexes by a pair of oligonucleotides using UV melting, circular dichroism spectroscopy, and a gel shift assay. Effects of the size of the linker between duplex-forming segments of the oligonucleotides on complexes' shape and number of subunits were compared and systematized for RNA/DNA, DNA/DNA, and RNA/RNA assemblies.
View Article and Find Full Text PDFMolecules
December 2024
Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!