The cause of Alzheimer's disease (AD) remains uncertain. The accumulation of amyloid peptides (Aβ) is the main pathophysiological hallmark of the disease. Spatial deficit is an important initial sign of AD, while other types of memory impairments that appear in later stages. The Barnes maze allows the detection of subtle alterations in spatial search by the analysis of use of different strategies. Previous findings showed a general performance deficit in this task following long-term (35 days) infusion of Aβ, which corresponds to the moderate or severe impairments of the disease. In the present study, we evaluated the effects of a low-dose 15-day long treatment with Aβ peptides on spatial and non-spatial strategies of rats tested in the Barnes maze. Aβ peptides (0.5 μL/site/day; 30 pmoL solution of Aβ1-40:Aβ1-42 10:1) or saline were bilaterally infused into the CA1 (on the first treatment day) and intraventricularly (on the following 15 days) in 6-month-old Wistar male rats. Aβ infusion induced a deficit in the performance (increased latency and distance traveled to reach the target compared to saline group). In addition, a significant association between treatment and search strategy in the retrieval trial was found: Aβ group preferred the non-spatial search strategy, while saline group preferred the spatial search. In conclusion, the protocol of Aβ infusion used here induced a subtle cognitive deficit that was specific to spatial aspects. Indeed, animals under Aβ treatment still showed retrieval, but using non-spatial strategies. We suggest that this approach is potentially useful to the study of the initial memory deficits in early AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797637 | PMC |
http://dx.doi.org/10.3389/fnagi.2018.00018 | DOI Listing |
Med Biol Eng Comput
January 2025
Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFBio Protoc
January 2025
Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.
View Article and Find Full Text PDFActa Ortop Bras
January 2025
Hospital Getulio Vargas, Departamento de Ortopedia e Traumatologia, do Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brazil.
Introduction: The three-dimensional evaluation of patients in the gait laboratory is a diagnostic method that is gaining ground in various orthopedic pathologies and, in the case of ankle fractures, can more accurately detail the degree of joint limitation.
Objective: To present the importance of laboratory gait studies in the postoperative period of ankle fractures associated with syndesmosis ligament injuries, increasing the arsenal for assessing whether the surgical approach and outcome were satisfactory.
Methods: Case series of 13 patients who underwent surgical treatment for ankle fractures associated with syndesmosis injuries, evaluated postoperatively in the gait clinic using the BTS GAITLAB hardware program.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!