Hibernating 13-lined ground squirrels (; TLGS) rank among the most brain hypoperfusion-tolerant mammals known. Herein we provide some evidence of cycling between an epithelial phenotype and a hybrid epithelial/mesenchymal (E/M) phenotype (partial EMT) within the brains of TLGS during each bout of hibernation torpor. During hibernation torpor, expression of the epithelial marker E-cadherin (E-CDH) was reduced, while expression of the well-known mesenchymal markers vimentin and Sox2 were increased. P-cadherin (P-CDH), which has recently been proposed as a marker of intermediate/partial EMT, also increased during torpor, suggesting that a partial EMT may be taking place during hibernation torpor. Members of the miR-200 family and miR-182 cluster and Akt isoforms (Akt1, Akt2), well-known EMT regulators, were also differentially regulated in the TLGS brain during hibernation bouts. Using SHSY5Y cells, we also demonstrate that the Akt1/Akt2 ratio determined the expression levels of miR-200/miR-182 miRNA family members, and that these miRNAs controlled the expression of EMT-related proteins. Accordingly, we propose that such cell state transitions (EMT/MET) may be one of the mechanisms underlying the extraordinary ischemic tolerance of the TLGS brain during hibernation bouts; hibernator brain cells appear to enter reversible states that confer the stress survival characteristics of cancer cells without the risk of neoplastic transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797618 | PMC |
http://dx.doi.org/10.3389/fnmol.2018.00022 | DOI Listing |
J Physiol Sci
January 2025
Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, 890-8544, Kagoshima, Japan. Electronic address:
Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan; Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan. Electronic address:
Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus).
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
Hibernating mammals such as the thirteen-lined ground squirrel () experience significant reductions in oxidative metabolism and body temperature when entering a state known as torpor. Animals entering or exiting torpor do not experience permanent loss of brain function or other injuries, and the processes that enable such neuroprotection are not well understood. To gain insight into changes in protein function that occur in the dramatically different physiological states of hibernation, we performed quantitative phosphoproteomics experiments on thirteen-lined ground squirrels that are summer-active, winter-torpid, and spring-active.
View Article and Find Full Text PDFCommun Biol
January 2025
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!