Aldehyde dehydrogenase enzymes (ALDHs) catalyze the oxidation of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD or NADP as cofactors and generating NADH or NADPH. Previous studies mainly focused on the ALDH role in detoxifying toxic aldehydes but their effect on the cellular NAD(P)H contents has so far been overlooked. Here, we investigated whether the ALDHs influence the cellular redox homeostasis. We used a double T-DNA insertion mutant that is defective in representative members of Arabidopsis thaliana ALDH families 3 (ALDH3I1) and 7 (ALDH7B4), and we examined the pyridine nucleotide pools, glutathione content, and the photosynthetic capacity of the aldh mutants in comparison with the wild type. The loss of function of ALDH3I1 and ALDH7B4 led to a decrease of NAD(P)H, NAD(P)H/NAD(P) ratio, and an alteration of the glutathione pools. The aldh double mutant had higher glucose-6-phosphate dehydrogenase activity than the wild type, indicating a high demand for reduced pyridine nucleotides. Moreover, the mutant had a reduced quantum yield of photosystem II and photosynthetic capacity at relatively high light intensities compared to the wild type. Altogether, our data revealed a role of ALDHs as major contributors to the homeostasis of pyridine nucleotides in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811564 | PMC |
http://dx.doi.org/10.1038/s41598-018-21202-6 | DOI Listing |
Int J Mol Sci
December 2024
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland.
4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a nicotinamide derivative, considered a new oncometabolite. 4PYR formation induced a cytotoxic effect on the endothelium. Elevated blood 4PYR concentration was observed in patients with cancer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Agricultural, Tarim University, Alar 843300, China.
wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFNat Commun
January 2025
Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford, UK.
The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!