In nature, bacteria frequently experience many adverse conditions, including heat, oxidation, acidity, and hyperosmolarity, which all tend to slow down if not outright stop cell growth. Previous work on bacterial stress mainly focused on understanding gene regulatory responses. Much less is known about how stresses compromise protein synthesis, which is the major driver of cell growth. Here, we quantitatively characterize the translational capacity of cells growing exponentially under hyperosmotic stress. We found that hyperosmotic stress affects bacterial protein synthesis through reduction of the translational elongation rate, which is largely compensated for by an increase in the cellular ribosome content compared with nutrient limitation at a similar growth rate. The slowdown of translational elongation is attributed to a reduction in the rate of binding of tRNA ternary complexes to the ribosomes. Hyperosmotic stress is a common stress condition confronted by during infection of the urinary tract. It can significantly compromise the bacterial growth rate. Protein translation capacity is a critical component of bacterial growth. In this study, we find for the first time that hyperosmotic stress causes substantial slowdown in bacterial ribosome translation elongation. The slowdown of translation elongation originates from a reduced binding rate of tRNA ternary complex to the ribosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821080PMC
http://dx.doi.org/10.1128/mBio.02375-17DOI Listing

Publication Analysis

Top Keywords

hyperosmotic stress
20
translational elongation
12
slowdown translational
8
cell growth
8
protein synthesis
8
growth rate
8
trna ternary
8
bacterial growth
8
translation elongation
8
stress
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!